Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,xét tam giác ACH và tam giác DCH có:
HA=HD(gt)
góc CHA= góc CHD(vì CH\(\perp\)AD)
HC chung => tam giác ACH=tam giác DCH(c.g.c)
tam giác ADC có CH vừa là trung tuyến đồng thời là đường cao=>tam giác ADC cân tại C
b,xét tam giác AHB và tam giác DHE có:
góc BHA= góc DHE( đối đỉnh)
HA=HD(cmt), HB=HE(gT)=>tam giác AHB= tam giác DHE(c.g.c)
gọi giao điểm DE với AC là K
vì tam giác AHB= tam giác DHE(cmt)=>góc HED= góc HBA
mà góc HED=góc CEK( đối đỉnh)=> góc HBA=góc CEK
lại có tam giác ABC vuông tại A=> góc HBA+ góc ECK=90 độ=> góc CEK+góc ECK=90 độ=>DK\(\perp AC\)
hay DE \(\perp AC\) mà CE\(\perp AD\)(tại H)=>E là trực tâm tam giác ADC
ăn cơm đã ý c tí mik làm sau
a) xét tam giác AHB và tam giác AHD ta có
AH=AH ( cạnh chung)
BH=HD(gt)
góc AHB= góc AHD (=90)
-> tam giác AHB= tam giác AHD (c-g-c)
b) ta có
DE vuông góc AC (gt)
AB vuông góc AC ( tam giác ABC vuông tại A)
-> DE//AB
ta có
AC>AB (gt)
-> góc ABC > góc ACB ( quan hệ cạnh góc đối diện trong tam giác)
c) Xét tam giác AHB và tam giác IHD ta có
AH=HI (gt)
BH=HD(gt)
góc AHB= góc IHD (=90)
-> tam giac AHB = tam giác IHD (c-g-c)
-> góc BAH= góc HID ( 2 góc tương ứng )
mà 2 góc nẳm ở vị trí sole trong
nên BA//ID
ta có
BA//ID (cmt)
BA//DE (cm b)
-> ID trùng DE
-> I,E,D thẳng hàng
a) xét tam giac ABH và tam giac ADH ta có
AH=AH (canh chung)
BH=HD(gt)
goc AHB= góc AHD (=90)
-> tam giac ABH= tam giac ADH (c-g-c)
-> AB=AD (2 cạnh tương ứng)
-> tam giac ADB cân tại A
b)Xét tam giac ABH vuông tại H ta có
AB2= AH2+BH2 ( định lý pitago)
152=122+ BH2
BH2=152-122
BH2=81
BH=9
Xét tam giác AHC vuông tại H ta có
AC2=AH2+HC2 ( định lý pitago)
AC2=122+162
AC2=400
AC=20
c) ta có BC= BH+HC=9+16=25
Xét tam giác ABC ta có
BC2=252=625
AB2+AC2=152+202=625
-> BC2=AB2+AC2 (=625)
-> tam giac ABC vuông tại A (định lý pitago đảo)
d)xét tam giác ABH và tam giác EDH ta có
BH=HD (gt)
AH=HE(gt)
góc BHA= góc DHE (=90)
-> tam giác ABH= tam giac EDH (c-g-c)
-> góc BAH= góc DEH (2 góc tương ứng)
mà 2 góc nằm ở vị trí so le trong
nên AB// ED
lại có AB vuông góc AC ( tam giác ABC vuông tại A)
-> ED vuông góc AC
a, Xét hai tam giác ABH và tam giác ADH có
BH=HD(giả thiết)
góc BHA=góc DHA(=90 độ)
AH chung
Suy ra ABH=ADH(dpcm)
b,c,d dài qúa mik ko ghi nổi bạn thông cảm nhé^^
a) Xét \(\Delta AHB\)và \(\Delta AHC\)có:
AB = AC, B = C \(\Rightarrow\)\(\Delta AHB\)= \(\Delta AHC\)(cạnh huyền - góc nhọn)
b) Xét \(\Delta AHC\)theo định lí Pi-ta-go ta có:
\(AC^2=AH^2+HC^2=4^2+3^2\)\(=16+9=25\Rightarrow AC=5cm\)
c) Xét \(\Delta AHC\) và \(\Delta MHC\)có:
AH = MH, CH chung \(\Rightarrow\)\(\Delta AHC\)= \(\Delta MHC\)( cạnh góc vuông )
\(\Rightarrow\)HAC = HMC \(\Rightarrow\)HMC = HAB \(\Rightarrow\)AB // CM
a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có
AB=AC(tam giác ABC cân tại A)
Góc A chung
=> Tam giác ABD=tam giác ACE(ch-gn)
b) Ta có: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
Và \(\widehat{ABD}=\widehat{ACE}\) ( tam giác ABD=ACE)
\(\Leftrightarrow\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\\ \Leftrightarrow\widehat{DBC}=\widehat{ECB}\)
Do đó tam giác BHC cân tại H
a) Xét \(\Delta AHB\)và \(\Delta DHB\)có:
\(AH=DH\left(gt\right)\)
BH là cạnh chung
\(\widehat{AHB}=\widehat{DHB}\left(=90^0\right)\)
\(\Rightarrow\Delta ABH=\Delta DBH\left(c.g.c\right)\)
b) Vì \(\Delta ABH=\Delta DBH\left(cmt\right)\)
\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )
=> BC là tia phân giác \(\widehat{ABD}\)( đpcm )
A)Xét t/giác AHB và t/giác DHB có
AH=AD(gt)
Góc AHB=góc DHB=900
BH là cạnh chung
Suy ra t/giác AHB=t/giác DHB(c-g-c)
B)Ta có Góc ABH=góc DBH( t/giác ABH=t/giác DBH)
Suy ra :BC là tia phân giác của góc ABD
C)Xét t/giác AHM vuông tại H và t/giác FNM vuông tại N
AM=FM(gt)
Góc AHM= góc FMN(2 góc đối đỉnh)
Suy ra t/giác AHM =t/giác FNM( cạnh huyền -góc nhọn)
Suy ra AH=NF (2 cạnh tương ứng)
Mà AH=HD (gt)
Suy ra NF=HD
Chúc bn hc tốt
a) Xét \(\Delta BHA\) và \(\Delta BHD\) có:
- BH là cạnh chung
- \(\widehat{BHA}=\widehat{BHD}\) (\(\widehat{BHA}=90^o\) mà \(\widehat{BHA}\) và \(\widehat{BHD}\) kề bù => \(\widehat{BHD}=90^o=\widehat{BHA}\))
- AH=HD (giả thiết đề bài)
=>\(\Delta BHA\)=\(\Delta BHD\) (c.g.c) => \(\widehat{HBA}=\widehat{HBD}\) (2 góc tương ứng) => BC là tia phân giác của góc BAD
b) Xét \(\Delta ABC\) và \(\Delta DBC\) có:
- AB=BD (vì \(\Delta BHA\)= mà AB và BD là 2 cạnh tương ứng)
- (vì = mà và là 2 góc tương ứng)
- BC là cạnh chung
=>\(\Delta ABC\) =\(\Delta DBC\) ( c.g.c)
Vậy bài toán đã được chứng minh.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
HA chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của góc BAC
b: Xét ΔBHA vuông tại H và ΔBHD vuông tại H có
BH chung
HA=HD
Do đó: ΔBHA=ΔBHD
=>BA=BD
=>ΔBAD cân tại B
c: Ta có: \(\widehat{BDA}=\widehat{BAD}\)(ΔBAD cân tại B)
\(\widehat{BAD}=\widehat{CAH}\)(cmt)
Do đó: \(\widehat{BDA}=\widehat{DAC}\)
=>BD//AC