Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta MBE\)và \(\Delta MAE\)ta có :
\(ME\): cạnh chung (1)
Góc \(MEB=MEA=90\)độ (2)
\(MB=MA\left(GT\right)\) (3)
Từ (1) ; (2) và (3) => \(\Delta MBE=\Delta MAE\)(cạnh-góc-cạnh)
\(\Rightarrow MB=MA\)( cặp cạnh tương ứng)
b) Áp dụng định lí Py-ta-go cho tam giác vuông BAC có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow8^2+6^2=BC^2\)
\(\Rightarrow64+36=BC^2\)
\(\Rightarrow100=BC^2\)
\(\Rightarrow\)BC= Căn 100
\(\Rightarrow BC=10\)
Vậy BC = 10 cm .
Tam giác ABC cân tại A nên AB = AC , góc B = góc C
Xét tam giác ABH và ACH có :
góc B = góc C ; AB = AC ; Góc BAH = CAH ( vì AH là tia phân giác của góc A )
=> tam giác ABH = tam giác ACH ( g.cg )
=> BH = CH ( hai cạnh tương ứng )
=> H là trung điểm của BC. => AH là đường đường trung tuyến của tam giác ABC .
d, Vì tam giác ABH = tam giác ACH => góc BHA = góc CHA (1) ( 2 góc tương ứng )
ta lại có : góc BHA + góc CHA = 180 độ (2) ( hai góc kề bù )
Từ (1) và (2) suy ra góc BHA = góc CHA = 90 độ => tam giác AHB vuông tại H
áp dụng định lí Pytago cho tam giác vuông AHB ta có : \(AB^2=AH^2+HB^2\Rightarrow AH^2=AB^2-HB^2.\)
=> \(AH=\sqrt{AB^2-HB^2}=\sqrt{13^2-5^2}=12\)(cm)
Bài 1:
Gọi M là trung điểm của BC
Vẽ BE là tia phân giác của góc B, E thuộc AC
nối M với E
ta có: BM =CM = 1/2.BC ( tính chất trung điểm)
AB=1/2.BC (gt)
=> BM = CM= AB ( =1/2.BC)
Xét tam giác ABE và tam giác MBE
có: AB = MB (chứng minh trên)
góc ABE = góc MBE (gt)
BE là cạnh chung
\(\Rightarrow\Delta ABE=\Delta MBE\left(c-g-c\right)\)
=> góc BAE = góc BME = 90 độ ( 2 cạnh tương ứng)
=> góc BME = 90 độ
\(\Rightarrow BC\perp AM⋮M\)
Xét tam giác BEM vuông tại M và tam giác CEM vuông tại M
có: BM=CM(gt)
EM là cạnh chung
\(\Rightarrow\Delta BEM=\Delta CEM\left(cgv-cgv\right)\)
=> góc EBM = góc ECM ( 2 cạnh tương ứng)
mà góc EBM = góc ABE = 1/2. góc B (gt)
=> góc EBM = góc ABE = góc ECM
Xét tam giác ABC vuông tại A
có: \(\widehat{B}+\widehat{ECM}=90^0\) ( 2 góc phụ nhau)
=> góc EBM + góc ABE + góc ECM = 90 độ
=> góc ECM + góc ECM + góc ECM = 90 độ
=> 3.góc ECM = 90 độ
góc ECM = 90 độ : 3
góc ECM = 30 độ
=> góc C = 30 độ
a) Xét tam giác ABM và tam giác ACM có:
AM cạnh chung
AB=AC( tam giác ABC cân tại A )
MB=MC (gt)
Suy ra tam giác ABM= tam giác ACM (c-c-c)
b) AM- đường trung tuyến của tam giác ABC (gt)
Và K trọng tâm của tam giác ABC
Suy ra K thuộc AM
Suy ra A,K,M thẳng hàng
Tam giác ABC cân tại A nên AM đồng thời là đường cao và M là trung điểm của BC
Khi đó ta có AM2 = AB2 - BM2 = 102 - 82 = 36 ⇒ AM = 6cm. Chọn A