K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có

M là trung điểm của BC

N là trung điểm của AC
DO đó: MN là đường trung bình

=>MN//AB

hay MD//AB

Xét tứ giác ABMD có 

AD//BM

AB//MD

Do đó; ABMD là hình bình hành

b:

Ta có: MN=1/2AB

nên MN=1/2AC

mà MN=1/2MD

nên AC=MD

c: Ta có: ABMD là hình bình hành

nên AD//MB và AD=MB

=>AD//MC và AD=MC

Xét tứ giác AMCD có

AD//MC

AD=MC

Do đó: AMCD là hình bình hành

mà MD=AC

nên AMCD là hình chữ nhật

23 tháng 10 2019

bài 1 . c) dễ dàng chứng minh tam giác DMA = tam giác DME (2 cạnh góc vuông)  .Ta đc DA=DE , mà AD =BC nên BC = DC 

 Suy ra : tam giác AME = tam giác NBC ( cạnh huyền-cạnh góc vuông )  .( 1) 

         Tam giác MAN và tam giác EMC có : AN song song với MC nên góc EMC = góc MAN  mà AN=MC(ANCM là hbh) , ME=MA nên 2 tam giác này bằng nhau (c.g.c) ;Suy ra góc M= góc e suy ra EC// MN (2) 

Từ (1) và (2) suy ra là htc 

23 tháng 10 2019

caau1 d) dựa vào tính chất 2 đường chéo = nhau song chứng minh từ từ là ra bởi đã có góc E=C= 90 độ

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

5 tháng 11 2017

a)  gócm=gócb =gócc=gócn mn // bc

b) ncf=cne=anm=gócb=cfe=fen; tam giác ine=tam giác icf suy ra ne=cf 

c) suy ra necf là hình bình hành có fe=in+nc=ie+if =nc nên necf là hcn

24 tháng 11 2024

Khong biết

 

11 tháng 11 2018

Phép nhân và phép chia các đa thức

11 tháng 11 2018

Phép nhân và phép chia các đa thức

20 tháng 9 2023

A B C E F I G

a/

Ta có

FA=FC; GB=GC => GF là đường trung bình của tg ABC

=> GF//AB Mà \(AB\perp AC\)

\(\Rightarrow GF\perp AC\)

=> AEGF là hình thang vuông tại A và F

b/

EI//BF (gt)

GF//AB => FI//BE

=> BEIF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

c/

Ta có GF là đường trung bình của tg ABC \(\Rightarrow GF=\dfrac{1}{2}AB\)

 BEIF là hbh (cmt) =>FI=EB

Mà \(EA=EB=\dfrac{1}{2}AB\)

=> GF=FI

Ta có

FA=FC

=> AGCI là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Mà \(GF\perp AC\Rightarrow GI\perp AC\)

=> AGCI là hình thoi (Hình bình hành có 2 đường chéo vuông góc là hình thoi)

d/

Để AGCI là hình vuông \(\Rightarrow AG\perp BC\) => AG là đường cao của tg ABC

Mà GB=GC => AG là đường trung tuyến của tg ABC

=> tg ABC là tg cân tại A (Tam giác có đường cao và đồng thời là đường trung tuyến là tg cân)

Mà \(\widehat{A}=90^o\) (gt)

=> Đk để AGCI là hình vuông thì tg ABC phải là tg vuông cân tại A