K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai Ia) Chứng minh tam giác ABD = tam giác ACEb) Chứng minh I là trung điểm của BCc) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCHd) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CFBài 2: Tam giác ABC vuông tại A...
Đọc tiếp

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai I

a) Chứng minh tam giác ABD = tam giác ACE

b) Chứng minh I là trung điểm của BC

c) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCH

d) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CF

Bài 2: Tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K

a) Tính độ dài cạnh BC

b) Chứng minh tam giác ABE = tam giác DBE. Suy ra BE là tia phân giác góc ABC

c)  Chứng minh AC = DK

d) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE tại M. Chứng minh tam giác AME cân

Các bạn làm hộ mình nha, mình cần gấp lắm

1

nhìu zữ giải hết chắc chết!!!

758768768978980

3 tháng 5 2017

A B C D E K H M

a. Có thể em thiếu giả thiết đọ lớn của các canhk AB, AC. Nếu có, ta dùng định lý Pi-ta-go để tính độ dài BC.

b. Ta thấy ngay tam giác ABE bằng tam giác DBE (cạnh huyền - cạnh góc vuông)

Từ đó suy ra \(\widehat{ABE}=\widehat{DBE}\) hay BE là phân giác góc ABC.

c. Ta thấy  tam giác ABC bằng tam giác DBK (cạnh góc vuông - góc nhọn kề)

nên AC = DK.

d. Do tam giác ABE bằng tam giác DBE nên \(\widehat{AEB}=\widehat{DEB}\)

Lại có AH // KD (Cùng vuông góc BC) nên \(\widehat{AME}=\widehat{MED}\) (so le trong)

Vậy \(\widehat{AME}=\widehat{AEM}\)

Vậy tam giác AME cân tại A.

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

b: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>MF=ME

=>M là trung điểm của EF

c: AC-AB=AE+EC-AD+DB

=2BD

Hình bn tự vẽ nha!!^^

a, Xét \(\Delta ADM\)VÀ \(\Delta ADN\)có:'

\(\widehat{MAD}=\widehat{DAN}\)(tia p/g \(\widehat{BAN}\))

\(AD\)chung

\(\widehat{ADN}=\widehat{ADM}\)(Đg thg \(\perp\))(=90 độ)

\(\Rightarrow\Delta'ADM=\Delta ADN\left(g.c.g\right)\)

\(\Rightarrow\widehat{M}=\widehat{N}\)(2 góc t/ứ)

Xét tam giác AMN có: \(\widehat{M}=\widehat{N}\Rightarrow\Delta AMN\)là tam giác cân  tại A

24 tháng 2 2021

toán lớp 7 thì mink chịu rùi ^_^

24 tháng 2 2021

gggggjjjk..hhhyh      iuugln............................lklhuluiiiihhhhhhh ok-

a: Xet ΔABH và ΔACH có

AB=AC

BH=CH

AH chung

=>ΔABH=ΔACH

=>góc BAH=góc CAH

=>AH là phân giác của góc BAC

b: góc DAH=góc CAH=góc DHA
=>ΔDAH cân tại D