K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

O A B C M K H E d P F I

1) Dễ thấy \(\widehat{HCB}=\widehat{ACB}=90^o\)

tứ giác CBKH có \(\widehat{HKB}=\widehat{HCB}=90^o\)nên là tứ giác nội tiếp

\(\Rightarrow\widehat{HCK}=\widehat{HBK}\)( 1 )

Mà \(\widehat{ACM}=\widehat{ABM}=\frac{1}{2}sđ\widebat{AM}\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(\widehat{ACM}=\widehat{ACK}\)

2) Xét \(\Delta AMC\)và \(\Delta BEC\)có :

AM = BE ; AC = BC ; \(\widehat{MAC}=\widehat{CBE}=\frac{1}{2}sđ\widebat{MC}\)

\(\Rightarrow\Delta AMC=\Delta BEC\)( c.g.c )

\(\Rightarrow MC=EC\)

Ta có : \(\widehat{CMB}=\frac{1}{2}sđ\widebat{BC}=45^o\)

Suy ra \(\Delta ECM\)vuông cân tại C

3) Ta có : \(\frac{AP.MB}{AM}=R=OB\Rightarrow\frac{AP}{MA}=\frac{OB}{MB}\)

Xét \(\Delta APM\)và \(\Delta OBM\), ta có :

\(\frac{AP}{MA}=\frac{OB}{MB}\)\(\widehat{PAM}=\widehat{MBO}=\frac{1}{2}sđ\widebat{AM}\)

\(\Rightarrow\Delta APM\approx\Delta BOM\left(c.g.c\right)\)

\(\Rightarrow\Delta APM\)cân tại P ( vì \(\Delta BOM\)cân tại O )

\(\Rightarrow PA=PM\)

Gọi giao điểm của BM và ( d ) là F ; giao điểm của BP với HK là I

Xét tam giác vuông AMF có PA = PM nên PA = PM = PF

Theo định lí Ta-let, ta có :

\(\frac{HI}{FP}=\frac{BI}{BP}=\frac{KI}{AP}\Rightarrow HI=KI\)

vì vậy PB đi qua trung điểm của HK

6 tháng 1 2019

B C M E D 1 2 3 4 A N 1 2 1 2 1 2 1 2 1 2 I

tg là tam giác nha ! 

a ) 

Ta có : gócA1 +  gócBAC = gócDAC ( AB nằm giữa AD và AC ) 

=> gócA1 = gócDAC - gócBAC = 90o - gócBAC ( 1 ) 

Ta có : gócA2 + gócBAC = gócBAE ( AC nằm giữa AB và AE ) 

=> gócA2 = gócBAE - gócBAC = 90o - gócBAC ( 2 ) 

Từ ( 1 ) và ( 2 ) suy ra : gócA1 = gócA2 . 

Xét tgABD và tgACE , có : 

AD = AC ( gt ) 

AB = AE ( gt ) 

gócA1 = gócA2 ( cmt ) 

Do đó : tgABD = tgACE ( c - g - c ) 

=> BD = CE ( 2 cạnh tương ứng ) .

b ) Xét tgABM và tgNCM , có : 

gócM1 = gócM2 

BM = CM ( AM là trung tuyến) 

AM = NM ( gt ) 

Do đó : tgABM = tgNCM ( c - g - c ) 

=> gócC1 = gócB1 ( 2 góc tương ứng ) 

Mà : gócB1 = gócADC + gócA1 ( góc ngoài của tg bằng tổng 2 góc trong không kề với nó ) 

Do đó : gócC1 = gócADC + gócA1  

Ta có : gócC2 + gócDAC + gócADC = 180o  ( tổng 3 góc trong tg ) 

=> gócC2 = 180o -  gócDAC - gócADC    = 180o - 90o - gócADC = 90o - gócADC   

Ta có : gócACN = gócC1 + gócC2 ( DC nằm giữa AC và NC ) 

   =>    gócACN = ( gócADC + gócA1 ) + ( 90o - gócADC ) = gócADC + gócA1 + 90o - gócADC = 90o + gócA1  ( 3 ) 

Ta có : gócDAE = gócBAE + gócA1 ( AB nằm giữa AD và AE ) 

=>       gócDAE =    90o      + gócA1  ( 4 ) 

Từ ( 3 ) và ( 4 ) suy ra : gócACN = gócDAE ( 5 ) 

Ta có : tgABM = tgNCM  ( cmt ) 

=> AB = CN ( 2 cạnh tương ứng ) 

Mà : AB = AE ( gt ) 

Do đó : CN = AE ( 6 ) 

Xét tgADE và tgACN , có : 

AD = AC  ( gt ) 

AE = CN ( cmt ( 6 ) ) 

gócACN = gócDAE ( cmt ( 5 ) )

Do đó : tgADE = tgACN ( c - g - c ) 

c )  Nằm ngoài khả năng của mình rồi ! 

Học tốt nha ! 

7 tháng 1 2019

thanks nhưng em chỉ còn câu C nhưng vẫn cảm ơn anh nhiều

DD
25 tháng 5 2021

a) \(\widehat{AMO}=\widehat{AIO}=90^o\) nên \(M\)và \(I\)cùng nhìn \(AO\)dưới góc \(90^o\)nên \(AMOI\)nội tiếp. 

b) \(OM=ON\)nên \(O\)thuộc đường trung trực của \(MN\)

\(AM=AN\)nên \(A\)thuộc đường trung trực của \(MN\)

nên \(AO\)là trung trực của \(MN\)nên \(AO\perp MN\).

Tam giác \(AMO\)vuông tại \(M\)đường cao \(MK\)nên

\(AM^2=AK.AO\).

31 tháng 1 2019

a, Chứng minh được  H C B ^ = H K B ^ = 90 0

b,  A C K ^ = H B K ^  (CBKH nội tiếp)

Lại có:  A C M ^ = H B K ^ = 1 2 s đ A M ⏜

=>  A C M ^ = A C K ^

c, Chứng minh được:

DMCA = DECB (c.g.c) => MC = CE

Ta có:  C M B ^ = C A B ^ = 1 2 s đ C B ⏜ = 45 0

=> DMCE vuông cân tại C

d, Gọi  P B ∩ H K = I

Chứng minh được DHKB đồng dạng với DAMB (g.g)

=>  H K K B = M A M B = A P R => H K = A P . B K R

Mặt khác: ∆BIK:∆BPA(g.g) => (ĐPCM)