Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của tia BC lấy F sao cho BF = MC
Nối D với F.
Ta có: \(\widehat{ABC}+\widehat{DBF}=180^o\) (kề bù)
\(\widehat{ACB}+\widehat{ECM}=180^o\) (kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\) (\(\Delta ABC\) cân tại A)
\(\Rightarrow\widehat{DBF}=\widehat{ECM}\)
Xét \(\Delta DBF\) và \(\Delta ECM\) có:
DB = EC (gt)
\(\widehat{DBF}=\widehat{ECM}\) (c/m trên)
BF = CM (dựng hình)
\(\Rightarrow\Delta DBF=\Delta ECM\left(c.g.c\right)\)
\(\Rightarrow\widehat{BFD}=\widehat{CME}\)
mà \(\widehat{CME}=\widehat{DMF}\) (đối đỉnh)
\(\Rightarrow\widehat{BFD}=\widehat{DMF}\) hay \(\widehat{DFM}=\widehat{DMF}\)
\(\Rightarrow\Delta DMF\) cân tại D
\(\Rightarrow DF=DM\) (1)
mà \(\Delta DBF=\Delta ECM\)
\(\Rightarrow DF=EM\) (2)
Từ (1) và (2) \(\Rightarrow DM=EM\)
\(\Rightarrow M\) là tđ của DE.
Theo mk nghĩ thì \(\Delta ABC\) cần bổ sung thêm yếu tố "cân tại A" mới làm đc. Thanh Nga Nguyễn
d: Ta có: \(\widehat{KBC}=\widehat{MBD}\)
\(\widehat{KCB}=\widehat{NCE}\)
mà \(\widehat{MBD}=\widehat{NCE}\)
nên \(\widehat{KBC}=\widehat{KCB}\)
hay ΔKBC cân tại K
=>KB=KC
Ta có: KB+BM=KM
KC+CN=KN
mà KB=KC
và BM=CN
nên KM=KN
=>ΔKNM cân tại K
a) Xét tam giác BID và tam giác CIE có:
BI=CI ( vì I là trung điểm của cạnh BC)
góc I1=góc I2 (2 góc đối đỉnh)
ID=IE ( I là trung điểm của canh DE)
=> tam giác BID=tam giác CIE (c.g.c)
=> BD=CE (đpcm)
b) Theo câu a) tam giác BID=tam giác CIE
=> góc B=góc C2
Lại có : góc B=góc C1 (gt)
=> góc C1=góc C2 hay CB là tia phân giác của góc ACE
- - Giải:
- a)
- Xét tam giác DIB và tam giác CIE có:
- Góc DIB = Góc CIE ( 2 góc đối đỉnh )
- BI = IC (Gỉa thiết )
- DI = IE( Gỉa thiết )
- => Vậy tam giác DIB = tam giác CIE
- ( c . g . c )
- => BD = CE ( 2 cạnh tương ứng )
- Câu b)
- Theo câu a), Tam giác DIB = Tam giác CIE
- => Góc DBI = Góc ICE ( 2 góc tương ứng )
- Mà góc ACB = góc ABC
- => Góc ACB = Góc ICE
- => CB là tia phân giác của góc ACE
Theo giả thiết suy ra E là trung điểm của NC, D là trung điểm của MB
Do đó NE=EC; BD=DM
Xét tam giác AEN và tam giác BEC có:
AE=BE
góc AEN = góc BEC
EN=EC
=> tam giác AEN = tam giác BEC (c.g.c)
=>AN=BC (2 cạnh tương ứng)
=> góc EAN = góc EBC => AN//BC (1)
Tương tự ta có : tam giác ADM = tam giác CAB (c.g.c)
AM=CB
góc DAM = góc DCB=> AM//BC (2)
Từ (1) và (2) ta có : AN + AM =2BC => A,M,N thẳng hàng
Do đó AM + AN = MN <=> MN = 2BC hay BC = 1/2 (đcpcm)