Cho tam giác ABC. Các đường trung trực của AB và AC cắt BC tại M và N.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2020

Sửa câu b: Từ M kẻ ME

Bg

a/ Xét hai tam giác AMB và AMC có:

AB = AC (gt)

BM = MC (vì M là trung điểm của BC)

AM là cạnh chung

Nên \(\Delta AMB=\Delta AMC\)(c.c.c)

Vậy \(\Delta AMB=\Delta AMC\)

b/ Xét hai tam giác vuông AME và AMF có:

\(\widehat{EAM}=\widehat{FAM}\)(vì \(\Delta AMB=\Delta AMC\))

AM là cạnh chung

Nên \(\Delta AME=\Delta AMF\)(g.c.g)

Do đó AE = AF (hai cạnh tương ứng)

Vậy AE = AF

c và d hơi dài. Đợi một thời gian :((

16 tháng 12 2020

một thời gian là bao lâu vậy bạn ?

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng \(a, \frac {AB+AC}{2}\)\(b,BE+CF < \frac{3}{2}BC\)\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CNBài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH ,...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng 

\(a, \frac {AB+AC}{2}\)

\(b,BE+CF < \frac{3}{2}BC\)

\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)

Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN

Bài 3 . Cho tam giác ABC , góc B = 45, đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB 

Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .

Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB 

0
Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0
7 tháng 4 2019

a) c/m tam giác BMI =CMI (c. g. c) 

              =>BM=CM(hai cạnh tương ứng) 

Xét tam giác BMC có BM=CM (cmt)

=> tam giác BMC cân tại M

b) Xét tam giác ABC có 

Góc BAC + gócABC+ góc ACB =180 độ 

=>góc ABC=60 độ

Ta lại cos tam giác BMC cân tại M =>gocs MBC=góc C =30 độ

Mà góc ABC =ABM+CBM

=>CBM=ABM=30 độ =1/2ABC

Vậy BM  là phân giác của góc ABC

c) c/m tam giác ABM= tam giác ibm( cạnh huyền canh góc vuông) 

=> AB=BI

MÀ BI=1/2BC=>AB=1/2BC

d) c/m tam giác BKI=BCA( c. g. c) 

=> góc KIB=góc CAB=90 độ

=> KI vuông góc với BC

mà MI cũng vuoong góc với BC 

=>3 điểm K,M,I thẳng hàng 

3 tháng 4 2018

Đua nào giai đi tao

21 tháng 4 2018

tui ko biết bài này

10 tháng 6 2017

a/ Xét tam giác BEM và tam giác CFM có:

góc BEM = góc CFM = 900 (GT)

BM = MC (AM là trung tuyến t/g ABC)

góc B = góc C (t/g ABC cân)

=> tam giác BEM = tam giác CFM

b/ Ta có: AB = AC (t/g ABC cân)

BE = CF (t/g BEM = t/g CFM)

=> AE = AF

Xét hai tam giác vuông AEM và AFM có:

AE = AF (cmt)

AM: cạnh chung

=> tam giác AEM = tam giác AFM

=> ME = MF

Ta có: AE = AF; ME = MF

=> AM là trung trực của EF

c/ Xét hai tam giác vuông ABD và ACD có:

AB = AC (GT)

AD: cạnh chung

=> tam giác ABD = tam giác ACD

=> BD = CD

Ta có: AB = AC; BD = CD

=> AD là trung trực của EF

Ta có: AM là trung trực của EF

AD là trung trực của EF

=> AM trùng AD

Vậy A;M;D thẳng hàng.

---> đpcm.

10 tháng 6 2017

Ta có hình vẽ:

A B C E F M D