K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

a) Tam giác ABM và ACM có AB=AC (gt), BM = CM(gt) và AM chung nên 2 tam giác bằng nhau (c.c.c)

b) Tam giác ABC cân tại A có AM là đường trung tuyến nên đồng thời là đường cao kẻ từ A => AM \(\perp\)BC 

c) Tam giác EBC và FCB có 

EB = FC

\(\widehat{EBC}=\widehat{FCB}\) (tam giác ABC cân tại A)

BC chung

=> tam giác EBC = tam giác FCB (c.g.c)

d) tam giác EBC = tam giác FCB => \(\widehat{ICB}=\widehat{IBC}\) (2 góc tương ứng)

=> tam giác IBC cân tại I => IB = IC

Xét tam giác AIB và AIC có

AI chung

AB =AC (gt)

IB=IC

=> tam giác AIB = AIC (c.c.c)

=> \(\widehat{BAI}=\widehat{CAI}\) mà \(\widehat{BAI}+\widehat{CAI}=\widehat{BAC}\)

=> AI là tia phân giác của \(\widehat{BAC}\) (1)

Tam giác ABC cân tại A có AM là đường trung tuyến => đồng thơi là đường pgiac

=> AM là tia pgiac của \(\widehat{BAC}\) (2)

từ 1 và 2 => A,I,M thẳng hàng

e) Có AB = AC(gt) => AE + EB = AF + FC mà BE = CF => AE = AF => tam giác AEF cân tại A

=> \(\widehat{AEF}=\widehat{AFE}=\dfrac{180^o-\widehat{EAF}}{2}=\dfrac{180^o-\widehat{BAC}}{2}\) (3)

Tam giác ABC cân tại A => \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{BAC}}{2}\)(4)

Từ 3 + 4 => \(\widehat{AEF}=\widehat{ABC}\) mà 2 góc đồng vị => EF // AB

 

a. vì AB=AC => tam giác ABC là tam giác cân 

Xét tam giác ABC ta có :

   AB=AC (gt)

   AM cạnh chung

   BM=CM (tam giác ABC là tam giác cân)

=> tam giác ABM = tam giác ACM ( c.c.c )

b. ta có : AB=AC ; BM=CM

=> AM vuông góc BC

a: Xét ΔAFB và ΔAEC có

AF=AE
góc BAF chung

AB=AC
Do đo: ΔAFB=ΔAEC

Suy ra FB=EC

b: Xét ΔGCB có góc GCB=góc GBC

nên ΔGBC cân tại G

c: Xét ΔABC có AE/AB=AF/AC

nên FE//BC

xét tam giác AEQ và tam giác BEC có

         EQ=EC

         AEQ=BEC đối đỉnh

         EA=EB

=> tam giác AEQ = tam giác BEC(c.g.g).

=> AQ=BC(cạnh tuognư ứng). (1)

Xét Tam giác AFP và tam giác CFB có

      AF=CF

     AFP=CFB đối đỉnh

     FB=FP

=>. tam giác AFB = tam giác CFB(c.g.c)

=> AP = BC (2)

từ (1) và (2) suy ra AP=AQ.

b) xét tam giác BEQ và tam giác AEC có

     EQ=EC

     BEQ=AEC đối đỉnh

     EB=EA

=> tam giác BEQ = tam giác AEC(c.g.c)

=> BQE=AEC(góc tương ứng) mà chúng ở vị trí so le trong nên BQ//AC.

xét tam giác PFC và BFA có:

FA=FC

AFB=CFP

BF=PF

=. tam giác PFC = BFA (c.g.c)

=> FAB = FCB(góc tương ứng)

mà chúng ở vị trí so le trong nên

CP//AB

cho tớ 1 tick nhé! ^^ cảm ơn

vì Tam gáic AEQ = BEC nên QAE=CBE, mà chugns ở vị trí so le trong nên AQ//BC.

=> QAB=CBA

xét tam giác ABQ và tam giác ABC có

     QAB=CAB

     AB chung

    CAB=QBA( AC//BQ)

vậy chúng bằng nhau(g.c.g)

AQB=ACB

mà AQB=CBR(đồng vị) từ hai điều này suy ra ACB=RBC

vì tam giác AFB=CFB nên A=C mà chúng ở vị trí so le trong nên AP//BC=>PAC=BCA

Xét tam giác ABC và PCA có

     BAC=PCA(AB//PC)

     AC chung

     PAC=BCA(cmt)

vậy chúng bằng nhau theo truognừ hợp g.c.g

=>ABC=CPA

mà CPA=RCP( đồng vị) từ hai điều này suy ra ABC=RCB.

Xét tam giác ABC và RCB có 

AQB=CBR

BC chung

CPA=RCP

vậy chúng bằng nhau theo truognừ hợp g.c.g

=> AB=RC;AC=RB(cạnh tuognư ứng)

* Vì AQ//BC,AP//BC, theo tiên đề Ơ-clit => ba điểm Q,A,P thẳng hàng

vì BC = AQ = AP nên BC = 1/2 QP

* Vì AC = BQ(cmt)

      AC=BR(cmt)

nên AC = 1/2 QR

vì theo đề cho ba điểm Q,B,R đã thằng hàng nên không cần chứng minh. ba điểm P,C,R cũng vậy.

* Vì AB=CP(cmt)

      AB=RC(cmt)

nên AB= 1/2 RP

ta có chu vi tam giác PQR = PQ + QR + RP =   \(\frac{1}{2}BC+\frac{1}{2}AC+\frac{1}{2}AB=\frac{1}{2}\left(AB+AC+BC\right)=\frac{1}{2}\)chu vi ABC điều phải chứng minh.

d) Xét tam giác  PQR có BQ=BR(cùng bằng AC)

                        CR=CP(cùng bằng AB)

                      AQ=AP(cmt) và Q,A,P thẳng hàng 

suy ra B,C và A lần lượt là trung điểm của QR, RP và PQ.

gọi giao điểm của QC và BP là H

tam giác PQR có QC, PB và RA là các đuognừ trung tuyến giao nhau tại H nên H là trọng tâm. Xong

vậy 3 đường này đồng quy

14 tháng 5 2015

a) xét tam giác AEQ và tam giác BEC có

         EQ=EC

         AEQ=BEC đối đỉnh

         EA=EB

=> tam giác AEQ = tam giác BEC(c.g.g).

=> AQ=BC(cạnh tuognư ứng). (1)

Xét Tam giác AFP và tam giác CFB có

      AF=CF

     AFP=CFB đối đỉnh

     FB=FP

=>. tam giác AFB = tam giác CFB(c.g.c)

=> AP = BC (2)

từ (1) và (2) suy ra AP=AQ.

b) xét tam giác BEQ và tam giác AEC có

     EQ=EC

     BEQ=AEC đối đỉnh

     EB=EA

=> tam giác BEQ = tam giác AEC(c.g.c)

=> BQE=AEC(góc tương ứng) mà chúng ở vị trí so le trong nên BQ//AC.

xét tam giác PFC và BFA có:

FA=FC

AFB=CFP

BF=PF

=. tam giác PFC = BFA (c.g.c)

=> FAB = FCB(góc tương ứng)

mà chúng ở vị trí so le trong nên

CP//AB

 

 

14 tháng 5 2015

Có thể loại đường trung bình nữa à Tuân Huỳnh Ngọc Minh???!!!