Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$S_{ABC}=AH.BC:2=12.20:2=120$ (cm2)
Thông tin A=90 độ không có ý nghĩa gì trong bài.
Ta có \(\widehat{A}=90^0\Rightarrow\Delta ABC\) vuông tại \(A\)
\(a,\widehat{C}=90^0-\widehat{B}=30^0\\ AC=\tan B\cdot AB=\tan60^0\cdot8=8\sqrt{3}\left(cm\right)\\ BC=\dfrac{AB}{\sin C}=\dfrac{8}{\sin30^0}=16\left(cm\right)\\ b,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot8\cdot8\sqrt{3}=32\sqrt{3}\left(cm^2\right)\)
câu 1. kẻ đường cao AH ( H thuộc BC)
xét tam giác ABH có AH= BH .tanB
xét tam giác ACH có AH= CH.tanC
~> BH = CH.tanC/tanB
có BC = BH + CH = CH ( tanB + tanC)/tanB = 9
CH=9tanB/(tanB+tanC)
xét tam giác ACH có AC=CH/cosC
~> AC =7,91
câu 2: thì chác là : trong tam giác vuông canh đối diện với góc 30 độ bằng nửa cạnh huyền ~> OAB là tam giác vuông tại A thì OB max = 2
câu 3
có sin^2(10)=sin^2(170)=sin^2(190)=sin^2(35...
....................................
rui` ban. làm típ đi ^^!
còn phần tiếp theo thì bạn kia đã có rùi
kẻ đường cao AH ( H thuộc BC)
xét tam giác ABH có AH= BH .tanB
xét tam giác ACH có AH= CH.tanC
~> BH = CH.tanC/tanB
có BC = BH + CH = CH ( tanB + tanC)/tanB = 9
CH=9tanB/(tanB+tanC)
xét tam giác ACH có AC=CH/cosC
~> AC =7,91
b: Xét ΔHBA vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
Dựng AH vuông góc với BC, đặt AB = x, ta có : AH = x.sin B = x.sin60 = x.căn 3 / 2
HB = x.cos 60 = x/2 => HC = BC - HB = 8 - x/2 = (16 - x)/2
AC = 12 - AB = 12 - x
Trong tam giác vuông AHC : AH^2 + HC^2 = AC^2
hay (x. căn 3 /2)^2 + (16 - x)^2/4 = (12 - x)^2
<=> 3x^2 + (16 - x)^2 = 4(12 - x)^2
Giải phương trình này tìm được x = 5
Kẻ đường cao AH ứng với BC
Đặt \(AB=x\) với \(0< x< 12\Rightarrow AC=12-x\)
Đặt \(BH=y\Rightarrow CH=8-y\) (với \(0< y< 8\))
Trong tam giác vuông ABH ta có:
\(cosB=\dfrac{BH}{AB}\Rightarrow BH=AB.cosB=\dfrac{x}{2}\Rightarrow y=\dfrac{x}{2}\)
\(\Rightarrow CH=8-y=8-\dfrac{x}{2}\)
\(sinB=\dfrac{AH}{AB}\Rightarrow AH=AB.sinB=\dfrac{x\sqrt{3}}{2}\)
Áp dụng Pitago cho tam giác vuông ACH:
\(AC^2=AH^2+CH^2\Leftrightarrow\left(12-x\right)^2=\left(\dfrac{x\sqrt{3}}{2}\right)^2+\left(8-\dfrac{x}{2}\right)^2\)
\(\Leftrightarrow16x-80=0\Rightarrow x=5\)
\(\Rightarrow AC=12-x=7\)
Vậy \(AB=5cm,AC=7cm\)
Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(8^2+12^2-BC^2=2\cdot8\cdot12\cdot\dfrac{1}{2}\)
=>\(BC^2=64+144-96=64+48=112\)
=>\(BC=4\sqrt{7}\left(cm\right)\)