K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2020

\(\widehat{ACD}=\widehat{BCD}-\widehat{BCA}=73-\left(90-\widehat{CBA}\right)=45\)=> Tam giác ACD vuông cân tại A=> AC=AD

Vẽ \(AH\perp DC\Rightarrow\hept{\begin{cases}AH//BE\\AH=DH=ACcos45=15\frac{\sqrt{2}}{2}sin62\end{cases}}\)

Xét \(AH//BE\Rightarrow\frac{EH}{DH}=\frac{AB}{AD}\Rightarrow\frac{EH}{AH}=\frac{AB}{AC}=cot62\Rightarrow EH=AHcot62=15\frac{\sqrt{2}}{2}sin62.cot62\)

                                                                                                                                              \(=15\frac{\sqrt{2}}{2}cos62\) 

Xét tam giác AHE vuông tại H \(\Rightarrow AE^2=AH^2+HE^2=\left(15\frac{\sqrt{2}}{2}\right)^2\left(sin^262+cos^262\right)=\left(15\frac{\sqrt{2}}{2}\right)^2\)

\(\Rightarrow AE=15\frac{\sqrt{2}}{2}cm\)

24 tháng 7 2019

tự túc lm đi

25 tháng 10 2020

A C H B E F D

6 tháng 8 2015

a) Vì \(\frac{CD}{AC}=\frac{1,5}{3}=\frac{1}{2}\)\(\frac{CE}{BC}=\frac{2,5}{5}=\frac{1}{2}\)

Nên \(\frac{CD}{AC}=\frac{CE}{BC}=\frac{1}{2}\)

Xét ΔCDE và ΔCAB có

      \(\frac{CD}{AC}=\frac{CE}{BC}=\frac{1}{2}\)

Góc DCE=ACB(đối đỉnh)

Vậy hai tam giác đồng dạng với nhau

=> Góc CDE=CAB=90 độ

Vậy ΔCDE là tam giác vuông.

Áp dụng định lí Pi-ta-go vào ΔCDE ta có:

      \(CE^2=DC^2+DE^2\Rightarrow DE^2=CE^2-CD^2=2,5^2-1,5^2=4\)

=> \(DE=\sqrt{4}=2cm\).

b) Vì ΔCDE đồng dạng với ΔCAB nên

\(\frac{CD}{AC}=\frac{DE}{AB}\Rightarrow AB=\frac{AC.DE}{CD}=\frac{3.2}{1,5}=4\left(cm\right)\)

ΔABC vuông tại A, đường cao AH, theo hệ thức lượng, ta có:

  •       \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{4.3}{5}=2,4\left(cm\right)\)
  •        \(AC^2=CH.BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{3^2}{5}=\frac{9}{5}=1,8\left(cm\right)\)

\(CH=BC-CH=5-1,8=3,2\left(cm\right)\)

  •