Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔAMB và ΔAMC, ta có:
AB = AC (gt)
BM = CM (vì M là trung điểm BC)
AM cạnh chung
Suy ra: ΔAMB= ΔAMC(c.c.c)
⇒ ∠(AMB) =∠(AMC) ̂(hai góc tương ứng)
Ta có: ∠(AMB) +∠(AMC) =180o (hai góc kề bù)
∠(AMB) =∠(AMC) =90o. Vậy AM ⏊ BC
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nen AM là đường cao
a/ - AB = AC ( gt )
ABM = ACM vì { - AM chung
(c.c.c) - MB = MC ( m là trung điểm )
b/ AB // DC k phải AB // BC
T/g ABM = t/g DCM ( c.g.c)
AM = DM ( gt )
Góc AMB = DMC ( đđ )
BM = CM ( gt )
Có ABM = DCM ( t/g ABM = t/g DCM )
Lại ở vị trí slt
=> AB // DC
c/
AB = AC ( gt )
=> ABC cân tại A
Có AM là trung tuyến ( m là trug điểm )
=> AM là đường cao ABC
=> AM vuông góc BC
a) Xét \(\Delta ABC\)có
\(AB=AC\left(gt\right)\)
\(\Rightarrow\Delta ABC\)cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}\)
b) Vì M là trung điểm của BC
=> AM là đường trung tuyến của \(\Delta ABC\)
Trong tam giác cân đường trung tuyến cũng là đường cao
\(\Rightarrow AM\perp BC\)
A B M C 1 2
a) Xét \(\Delta ABC\)có : AB = BC ( gt )
\(\Rightarrow\Delta ABC\)cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}\)
b) Xét \(\Delta ABM\)và \(\Delta ACM\)có :
\(AB=AC\left(gt\right)\)
\(BM=MC\)( M là trung điểm của BC )
AM chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
\(\Rightarrow\widehat{M_1}=\widehat{M_2}\)( 2 góc tương ứng )
mà \(\widehat{M_1}+\widehat{M_2}=180^o\)( kề bù )
\(\Rightarrow\widehat{M_1}=90^o\)
\(\Rightarrow AM\perp BC\)
a) tam giác AMB và AMC có :
AM là cạnh chung
AB=AC(giả thiết)
MB=MC( M trung điểm của BC)
=>tam giác AMB=AMC(c-c-c)
b) tam giác AMB =AMC(cm trên)
=> góc BAM = CAM (hai góc tương ứng)
mà AM nằm giữa AB và AC
=> AM là tia phân giác của góc BAC
c)tam giác AMB = AMC (cm trên)
=> góc AMB = AMC( 2 góc tương ứng)
mà góc AMB+AMC=180o
=> góc AMB=AMC=180/2=90o
=> AM vuông góc với BC
nhớ vẽ hình
tick nha
a, xét tam giác ABM và tam giác ACM có:
AB=AC
Góc B= góc C
BM=CM
=> tam giác ABM=tam giác ACM (c.g.c)
b, Xét tam giác ABC cân tại A có AM là đường trung tuyến => AM đồng thời là đường cao hay AM vuông góc với BC
a) Vì M là trung điểm của BC nên BM = BC
Xét 2 tam giác ABM và ACM có:
AM là cạnh chung (1)
BM=CM (2)
AB=AC (3)
Từ (1), (2),(3) => Tam giác ABM = tam giác ACM
b) Vì AB=AC => ABC là tam giác cân mà AM là đường trung tuyến nên:
=> AM cũng là đường cao hay AM vuông góc với BC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
A B C M
\(a,\) Xét \(\Delta ABM\) và \(\Delta ACM\) có:
\(AB=AC\) (giả thiết)
\(AM\) là cạnh chung
\(BM=CM\) (giả thiết)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
\(b,\) Vì \(\Delta ABM=\Delta ACM\) (chứng minh câu \(a\))
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) (\(2\) góc tương ứng)
\(\Rightarrow AM\) là tia phân giác \(\widehat{BAC}\)
\(c,\) Vì \(\Delta ABC\) cân tại \(A\) (giả thiết)
Mà \(AM\) là tia phân giác \(\widehat{BAC}\) (chứng minh câu \(b\))
\(\Rightarrow AM\) là đường trung trực \(\Delta ABC\)
\(\Rightarrow AM\perp BC\) tại \(M\)
A B C M
Xét tam giác AMC và tam giác ABM ta có :
AM chung
AC = AB
BM = MC ( vì M là trung điểm )
^AMC = ^AMB ( 2 góc tương ứng )
Vì ^AMB = ^AMC (cmt)
Mà ^AMB + ^AMC = 180^0 ( 2 góc kề bù )
=)) ^AMB = ^AMC = 90^0
Vậy AM \(\perp\)BC (đpcm)
Xét ΔΔAMB và ΔΔAMC có:
AM chung
AB = AC (gt)
MB = MC (suy từ gt)
=> ΔΔAMB = ΔΔAMC (c.c.c)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) ( hai góc tương ứng )
mà \(\widehat{AMB}+\widehat{AMC}=180^o\) ( kề bù )
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
Do đó AM ⊥ BC.