Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Tự vẽ hình, viết GT,KL
a) Ta có tam giác ABC có AB=AC
=> t/g ABC cân tại A
=> ^ABC=^ACB mà M thuộc BC
=> ^ABM=^ACM
Xét t/g ABM và ACM có:
AB=AC (gt)
^ABM=^ACM (cmt)
MB=MC ( M là trung điểm BC)
=> t/g ABM=t/g ACM (c.g.c)
b) Vì t/g ABM =t/gACM (câu a)
=> ^AMB=^AMC ( 2 góc tương ứng )
mà ^AMB+^AMC=180' ( 2 góc kề bù)
=> ^AMB=^AMC = 90'
=> AM vuông góc BC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
a: Xét ΔABM và ΔACM có
AB=AC
góc BAM=góc CAM
AM chung
=>ΔABM=ΔACM
b: ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
c: ΔABM=ΔACM
=>góc AMB=góc AMC=180/2=90 độ
=>AM vuông góc BC
d: ΔABM=ΔACM
=>BM=CM
=>Mlà trung điểm của BC
a, xét tam giác ABM và tam giác ACM có:
AB=AC
Góc B= góc C
BM=CM
=> tam giác ABM=tam giác ACM (c.g.c)
b, Xét tam giác ABC cân tại A có AM là đường trung tuyến => AM đồng thời là đường cao hay AM vuông góc với BC
a) Vì M là trung điểm của BC nên BM = BC
Xét 2 tam giác ABM và ACM có:
AM là cạnh chung (1)
BM=CM (2)
AB=AC (3)
Từ (1), (2),(3) => Tam giác ABM = tam giác ACM
b) Vì AB=AC => ABC là tam giác cân mà AM là đường trung tuyến nên:
=> AM cũng là đường cao hay AM vuông góc với BC