K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Lời giải:

Theo BĐT tam giác thì:

$AC< AB+AC$ hay $AC< 9$

$BC< AB+AC$ hay $7< 2+AC$ hay $AC>5$ (cm)

Vậy $9> AC> 5$. Mà $AC$ là số nguyên tố nên $AC=7$

19 tháng 12 2019

Áp dụng bất đẳng thức trong tam giác ABC ta có: AB – AC < BC < AB + AC

Thay số:  4 – 2 < BC < 4 + 2

Suy ra 2 < BC < 6

Mà độ dài cạnh BC là một số nguyên chẵn, vậy BC = 4 cm.

Chọn đáp án B

a, Áp dụng định lý Pitago:

`AB^2  + AC^2 = BC^2`

`=> 25 + AC^2 = 169`

`=> AC^2 = 144`

`=> sqrt 144  = 12`.

b. Áp dụng định lý Pytago ta có:

`AB^2 + AC^2 = BC^2`

`16 + 49 = BC^2`

`BC^2 = 65`

`BC  = sqrt 65`.

13 tháng 5 2022

Áp dụng định lí Pitago trong tam giác ABC vuông tại A

AC = BC2 + AB2

       = 132 + 52    

        = \(\sqrt{194}\)  = 14 cm

Áp dụng định lí Pitago trong tam giác ABC cân tại A

BC = AB2  + AC2

       = 42  + 72  

       = \(\sqrt{65}\) = 8 cm

4 tháng 5 2023

Gọi x là độ dài cạnh AC, Đk: \(x>0\)

Theo bất đẳng thức tam giác, ta có:

\(10-7< x< 10+7\) 

\(\leftrightarrow3< x< 17\)

Vì x là một số nguyên tố lớn hơn 11

Nên x = 13

\(\rightarrow\) Chọn D

\(#Hân\)

Gọi độ dài của cạnh `AC` là `x (x \ne 0)`

`@` Theo bất đẳng thức trong tam giác, ta có:

`AB+BC > x > AB - BC`

`-> 10+7 > x > 10-7`

`-> 17 > x > 3`

`-> x={16 ; 15 ; 14 ; ... 4}`

Mà `x` là `1` số nguyên tố lớn hơn `11`

`-> x=13 (cm)`

Xét các đáp án trên

`-> D.`

21 tháng 3 2022

C

3 tháng 5 2019

#)Giải :

   Áp dụng tích chất bất đẳng thức tam giác :

    AB + AC > BC > AB - AC

 = 4 + 2 > BC > 4 - 2

 =    6    > BC >   2 

Vì độ dài BC là một số nguyên chẵn => BC = 4 cm 

    #~Will~be~Pens~#

a: AC-BC<AB<AC+BC

=>5<AB<8

mà AB>6

nên AB=7cm

b: AB-AC<BC<AB+AC

=>2<BC<14

mà BC<4

nên BC=3cm

23 tháng 3 2017

a.

3 - 1 < BC < 3 + 1

=> 2 < BC < 4

=> BC = 3m

b.

10 - 2 < AC < 10 + 2

=> 8 < AC < 12

=> AC = 9 hoặc 10 hoặc 11 (cm)