K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2021

a, Xét ΔABC có góc BAC vuông

=> \(BC^2=AB^2+AC^2\)

=> \(BC^2=25\)

\(\Rightarrow BC=5\) (cm)

   Xét ΔABC và ΔDAC, có

          \(\widehat{BAC}=\widehat{ADC}\)          

          \(\widehat{C}\) chung          

=> ΔABC∼ΔDAC(g.g)

=> \(\dfrac{AD}{AB}=\dfrac{AC}{BC}\)

=>\(\dfrac{AD}{3}=\dfrac{4}{5}\)

\(\Rightarrow AD=2,4cm\)

24 tháng 4 2021

b, Vì ΔABC∼ΔDAC (cmt)

=>\(\dfrac{AC}{BA}=\dfrac{DC}{AC}\)

  Xét ΔADB và ΔADC, có:

   +   \(\widehat{ADC}=\widehat{ADB}\) (=90 độ)

   +   \(\dfrac{AC}{BA}=\dfrac{DC}{AC}\)

=> ΔADB∼ΔADC (c.g.c)

=> \(\dfrac{AD}{BD}=\dfrac{DC}{AD}\)

\(\Rightarrow AD.AD=BD.DC\)

=> \(AD^2\)= BD.DC(đpcm)

Sửa đề; AB=6cm

\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AD/DC=BA/BC=3/5

27 tháng 7 2018

a, Xét tam giác ADB và tam giác CDI có:

                     góc ADB = góc CDI (đối đỉnh)

                     góc BAD = góc DCI (gt)

Do đó: Tam giác ADB đồng dạng với tam giác CDI (g.g) (1)

Suy ra: góc ABD = góc DIC

b, Tam giác ADB đồng dạng với tam giác ACI (g.g) (2)

Suy ra: AD/AC = AB/AI

c, Từ (1),ta thấy: AD/CD = DB/DI nên AD.DI = BD.BC

Từ (2),ta có: AD/AC = AB/AI nên AD.AI = AB.AC

Do đó: AD(AI-DI) = AB.AC - BD.BC

           AD^2 = AB.AC -BD.BC

Bài bạn đưa ra hơi khó đấy.Chúc bạn học tốt.

28 tháng 7 2018

Cảm ơn bn nhiều lắm :3

10 tháng 3 2022

A B X M D 5 6 7

a)AD là phân giác góc A nên ta có :
AB/AC=DB/DC
=>5/6=7-DC/DC
<=>5DC=6(7-DC)
<=>5DC=42-6DC

<=>5DC+6DC=42
<=>11DC=42
<=>DC=42:11=4
Vì DC=4 mà BC=BD+DC
                  =>7=BD+4
                  =>BD=7-4=3
Vậy BD=3cm
        DC=4cm

16 tháng 3 2022

a, Theo định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=4cm\)

Vì BD là pg nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{DC}{BC}=\dfrac{AD}{AB}=\dfrac{4}{8}=\dfrac{1}{2}\Rightarrow DC=\dfrac{5}{2}cm;AD=\dfrac{3}{2}\)cm 

b, Vì DE // AB Theo hệ quả Ta lét 

\(\dfrac{DC}{AC}=\dfrac{DE}{AB}\Rightarrow DE=\dfrac{AB.DC}{AC}=\dfrac{15}{8}\)cm

a) Xét ΔADB và ΔCDI có

\(\widehat{ADB}=\widehat{CDI}\)(hai góc đối đỉnh)

\(\widehat{BAD}=\widehat{ICD}\)(gt)

Do đó: ΔADB\(\sim\)ΔCDI(g-g)

còn câu b nữa em