Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé!
a, Xét 2 tam giác vuông AEM và t/g CFM có:
AM=CM(gt)
\(\widehat{AME}=\widehat{CMF}\)(ĐỐI đỉnh)
=>\(\Delta AEM=\Delta CFM\)(cạnh huyền - góc nhọn)(đpcm)
b, Vì\(\Delta AEM=\Delta CFM\)(C/M câu a) nên \(\widehat{EAM}=\widehat{FCM}\)( 2 góc tương ứng)
mà 2 góc này ở vị trí so le trong nên AF//CE
c,\(\widehat{PMF}+\widehat{QMF}=180\)độ
=>3 điểm P,Q,M thẳng hàng(đpcm)
k tớ nhé, hok tốt!
a: Xét ΔAME vuông tại E và ΔCMF vuông tại F có
AM=CM
\(\widehat{AME}=\widehat{CMF}\)
Do đó: ΔAME=ΔCMF
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Ta có: ΔABE=ΔACF
nên BE=CF
Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
CF=BE
Do đó: ΔFBC=ΔECB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
c: Ta có: AB=AC
nên A nằm trên đườg trung trực của BC(1)
ta có: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,M thẳng hàng