Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC ta có
BC2=52=25
AB2+AC2=25
->BC2=AC2+AB2->tam giác ABC vuông tại A ( đinh lý pitago đảo)
b) xét tam giác BAD và tam giác EDA ta có
BD=AE (gt)
AD=AD ( cạnh chung)
góc BDA = góc EAD ( 2 góc sole trong và AE//BD)
-> tam giac BAD= tam giac EDA (c-g-c)
=> AB=DE ( 2 cạnh tương ứng)
c)ta có
góc CAD+ góc BAD =90 (2 góc kề phụ)
góc CDA+ góc DAH=90 ( tam giác ADH vuông tại H)
góc BAD=góc DAH ( AD là tia p./g góc BAH)
->góc CAD=góc CDA
-> tam giác ADC cân tại C
d) Xét tam giác ADC cân tại C ta có
CM là đường trung tuyến ( M là trung điểm AD)
-> CM là đường cao
ta có
góc BAD= góc ADE ( tam giác BAD= tam giác EDA)
mà 2 góc nằm ở vị trí sole trong nên AB//DE
mặt khác AB vuông góc AC ( tam giác ABC vuông tại A)
do đó DE vuông góc AC
Gọi F là giao điểm DE và AC
Xét tam giác CAD ta có
DF là đường cao (DE vuông góc AC tại F)
AH là đường cao (AH vuông góc BC)
AH cắt DE tại I (gt)
-> I là trực tâm
mà CM cũng là đường cao tam giác ACD (cmt)
nên CM đi qua I
-> C,M ,I thẳng hàng
a: Xét ΔABD có \(\widehat{B}=\widehat{BAD}\left(=60^0\right)\)
nên ΔABD đều
Xét ΔACD có \(\widehat{DAC}=\widehat{DCA}\)
nên ΔACD cân tại D
b: Ta có: ΔABD đều
nên BA=BD(1)
Xét ΔABC vuông tại A có
\(\sin30^0=\dfrac{AB}{BC}\)
=>AB=1/2BC(2)
Từ (1) và (2) suy ra BD=1/2BC
hay D là trung điểm của BC
c: Xét ΔABC có
D là trung điểm của BC
DI//AB
Do đó: I là trung điểm của AC
hay IA=IC