Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(Gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{BD}{6}=\dfrac{CD}{8}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{6}=\dfrac{CD}{8}=\dfrac{BD+CD}{6+8}=\dfrac{BC}{14}=\dfrac{10}{14}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{6}=\dfrac{5}{7}\\\dfrac{CD}{8}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{30}{7}cm\\CD=\dfrac{40}{7}cm\end{matrix}\right.\)
Vậy: \(BD=\dfrac{30}{7}cm;CD=\dfrac{40}{7}cm\)
a: Xét ΔACB có BD là đường phân giác
nên AD/AB=CD/BC
=>AD/36=CD/36
mà AD+CD=24
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{36}=\dfrac{CD}{36}=\dfrac{AD+CD}{36+36}=\dfrac{24}{72}=\dfrac{1}{3}\)
Do đó: AD=CD=12cm
b: Xét ΔABC có DE//BC
nên AE/EB=AD/DC
=>AE=EB=AB/2=18cm
a: sin B=AC/BC
=>15/BC=sin60
=>BC=10 căn 3(cm)
=>AB=5căn 3(cm)
góc ABD=60/2=30 độ
Xét ΔABD vuôg tại A có tan ABD=AD/AB
=>AD/5căn 3=tan30=căn 3/3
=>AD=5(cm)
=>BD=10cm
=>DC=15-5=10cm
b: AE/AD=1/3
=>AE=1/3*5=5/3
Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a: Xét ΔABC có AD là phân giác
nên DB/AB=DC/AC
=>DB/4=DC/5=(DB+DC)/(4+5)=6/9=2/3
=>DB=8/3cm; DC=10/3cm
b: Xét ΔBAC có DK//AB
nên DK/AB=CD/CB
=>DK/4=10/3:6=10/18=5/9
=>DK=20/9cm
Xét ΔBAC có DE//AC
nên DE/AC=BD/BC
=>DE/5=8/3:6=8/18=4/9
=>DE=20/9cm
Xét tứ giác AEDK có
AE//DK
AK//DE
=>AEDK là hbh
mà AD là phân giác
nên AEDK là hình thoi
=>AE+DE=DK=AK=20/9cm
mình không biết làm, chỉ biết vẽ hình mong MN thông cảm