K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

25 tháng 12 2023

a: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

b: Ta có: ΔABE=ΔADE

=>EB=ED

=>E nằm trên đường trung trực của BD(1)

Ta có: AB=AD

=>A nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AE là đường trung trực của BD

=>AE\(\perp\)BD tại H và H là trung điểm của BD

c: Xét ΔEBM và ΔEDC có

EB=ED

\(\widehat{BEM}=\widehat{DEC}\)(hai góc đối đỉnh)

EM=EC

Do đó: ΔEBM=ΔEDC

=>\(\widehat{EBM}=\widehat{EDC}\) và BM=DC

Ta có: \(\widehat{EBM}=\widehat{EDC}\)

\(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)

\(\widehat{ABE}=\widehat{ADE}\)(ΔABE=ΔADE)

Do đó: \(\widehat{EBM}+\widehat{EBA}=180^0\)

=>A,B,M thẳng hàng

Ta có: AB+BM=AM

AD+DC=AC

mà AB=AD và BM=DC

nên AM=AC

=>A nằm trên đường trung trực của MC(1)

Ta có: EM=EC

=>E nằm trên đường trung trực của MC(2)

Từ (1) và (2) suy ra AE là đường trung trực của MC

=>AE\(\perp\)MC

mà AE\(\perp\)BD

nên BD//MC

23 tháng 12 2023

a: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

b: ta có: ΔABE=ΔADE

=>EB=ED

=>E nằm trên đường trung trực của BD(1)

ta có: AB=AD

=>A nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AE là đường trung trực của BD

=>AE\(\perp\)BD tại H và H là trung điểm của BD

c: Xét ΔBEM và ΔDEC có

EB=ED
\(\widehat{BEM}=\widehat{DEC}\)

EM=EC

Do đó: ΔBEM=ΔDEC

=>\(\widehat{EBM}=\widehat{EDC}\)

mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)

và \(\widehat{ABE}=\widehat{ADE}\)(ΔABE=ΔADE)

nên \(\widehat{ABE}+\widehat{MBE}=180^0\)

=>A,B,M thẳng hàng

Ta có: ΔEBM=ΔEDC

=>BM=DC

Xét ΔAMC có \(\dfrac{AB}{BM}=\dfrac{AD}{DC}\)

nên BD//MC

Bài 1: Cho tam giác ABC ( BC > AB). Tia phân giác của góc ABC cắt cạnh AC tại điểm E. Trên cạnh BC lấy điểm D sao cho BD = AB.a) Chứng minh: tam giác EAB = tam giác EDB.b) Kéo dài BA và DE cắt nhau ở K. Chứng minh: DK = AC.c) Kẻ CH vuông góc với BE kéo dài tại H. Chứng minh: CH // ADd) Chứng minh ba điểm C, H, K thẳng hàng.Bài 2: Cho tam giác ABC (BC > AB). Tia phân giác của góc ABC cắt AC tại D. Trên BC lấy điểm E sao...
Đọc tiếp

Bài 1: Cho tam giác ABC ( BC > AB). Tia phân giác của góc ABC cắt cạnh AC tại điểm E. Trên cạnh BC lấy điểm D sao cho BD = AB.

a) Chứng minh: tam giác EAB = tam giác EDB.

b) Kéo dài BA và DE cắt nhau ở K. Chứng minh: DK = AC.

c) Kẻ CH vuông góc với BE kéo dài tại H. Chứng minh: CH // AD

d) Chứng minh ba điểm C, H, K thẳng hàng.

Bài 2: Cho tam giác ABC (BC > AB). Tia phân giác của góc ABC cắt AC tại D. Trên BC lấy điểm E sao cho BE = AB.

a) Chứng minh: AD = DE.

b) BA và ED kéo dài cắt nhau ở I. Chứng minh: góc BID = góc BCD.

c) Chứng minh: BD là đường trung trực của đoạn thẳng IC.

d) Từ E kẻ đường thẳng song song với BD cắt AB kéo dài ở K. Chứng minh: tam giác AEK vuông. Tam giác ABC cần thêm điều kiện gì để AE = EK?

CÁC BẠN GIÚP MÌNH VỚI!!! KO CẦN VẼ HÌNH ĐÂU!!! MÌNH ĐANG CẦN GẤP LẮM!!! AI NHANH NHẤT MÌNH TICK CHO!!!

0
19 tháng 11 2016

Ta có hình vẽ:

a/ Xét tam giác ABE và tam giác ADE có

AE: cạnh chung

AB = AD (GT)

góc BAE = góc DAE (GT)

Vậy tam giác ABE = tam giác ADE (c.g.c)

b/ Giao điểm của BD và AE là H (Đã vẽ trên hình)

a: Xét ΔABE và ΔADE có 

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

Hai câu còn lại sai đề rồi bạn