Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<Tự vẽ hình nha>
a)Xét ΔABE và ΔACF
góc AEB=góc AFC
góc BEA=góc CFA
Vậy ΔABE ∼ ΔACF(g.g)
⇒\(\dfrac{AB}{AC}\)=\(\dfrac{AE}{AF}\)⇔AB.AF=AE.AC
⇒\(\dfrac{AB}{AF}\)=\(\dfrac{AE}{AC}\)
b)Xét ΔAEF và ΔABC
Góc A:chung
\(\dfrac{AB}{AF}\)=\(\dfrac{AE}{AC}\)(cmt)
Vậy ΔAEF∼ΔABC (g.g)
a: Xét ΔABE và ΔACF có
góc AEB=góc AFC
góc A chung
=>ΔABE đồng dạng với ΔACF
=>AE/AF=AB/AC
=>AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
=>FE/BC=AE/AB
=>FE*AB=AE*BC
a: Xét ΔABE và ΔACF có
góc AEB=góc AFC
góc BAE chung
=>ΔABE đồng dạng với ΔACF
b: ΔABE đồng dạng với ΔACF
=>AE/AF=AB/AC
=>AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
=>EF/BC=AE/AB
=>AE*BC=AB*EF
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔABE∼ΔACF(g-g)
Mình bổ sung câu c nha
Xét tứ giác HBDC có
BH // DC (GT)
HC // BD (GT)
\(\Rightarrow\) HBDC là hình bình hành
Mà I là trung điểm của BC
\(\Rightarrow\) I là trung điểm của HD
\(\Rightarrow\) 3 điểm H,I,D thẳng hàng
a, Xét \(\Delta ABEv\text{à}\Delta ACF\)
\(AEB=\text{AF}C\left(=90^o\right)\)
\(BAE=FAC\) (góc chung)
\(\Rightarrow\Delta ABE~\Delta ACF\left(g.g\right)\)
b,Từ \(\Delta ABE~\Delta ACF\) (chứng minh trên)
\(\Rightarrow\frac{AB}{AC}=\frac{AE}{\text{AF}}\Rightarrow\frac{\text{AF}}{AC}=\frac{AE}{AB}\)
Xét \(\Delta AEFva\Delta ABC\)
\(\frac{AF}{AC}=\frac{AE}{AB}\left(cmt\right)\)
\(EAF=BAC\) (Góc chung)
\(\Rightarrow\Delta AEF~\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\frac{AE}{AB}=\frac{\text{EF}}{BC}\Rightarrow AE.BC=AB.\text{EF}\)
a) Xét ΔABE và ΔACFcó:
ˆA chung
ˆAEB=ˆAFC=90o
⇒ΔAEB∼ΔAFC (g.g)
b) ⇒AE/AF=AB/AC (hai cạnh tương ứng tỉ lệ)
⇒AE/AB=AF/AC
Xét ΔAEFvà ΔABC có:
ˆA chung
AE/AB=AF/AC(chứng minh trên)
⇒ΔAEF∼ΔABC (c.g.c)
⇒AE/AB=EF/BC (hai cạnh tương ứng tỉ lệ)
⇒AE.BC=AB.EF⇒AE.BC=AB.EF
c) Tứ giác BFCDBFCD có: BD//CH (giả thiết)
CD//BH
nên tứ giác BFCDlà hình bình hành
⇒ hai đường chéo cắt nhau tại trung điểm của mỗi đường, có I là trung điểm của BC, nên I là trung điểm của HD.
H,I,D thẳng hàng.