Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời 2 câu đầu nha, 2 câu sau tí nữa mình viết sau
a, \(\Delta ABC\)cân tại A có: AH là đường cao của \(\Delta ABC\)\(\Rightarrow\)AH là trung tuyến của \(\Delta ABC\)\(\Rightarrow BH=HC=\frac{BC}{2}=\frac{12}{2}=6\left(cm\right)\)
\(\Delta ABH\)có \(\widehat{AHB}=90^o\)
\(\Rightarrow AB^2=AH^2+BH^2\)(định lý Py-ta-go)
hay \(10^2=AH^2+6^2\)
\(AH^2=64\)
\(AH=8\left(cm\right)\)
b, \(\Delta ABC\)có: \(HD//AC\left(gt\right)\)
\(BH=HC\left(cmt\right)\)
\(\Rightarrow BD=DA\)
\(\Delta ABH\)vuông tại H có: HD là trung tuyến của \(\Delta ABH\)\(\Rightarrow HD=BD=DA=\frac{AB}{2}\)
\(\Delta BDH\)có: \(HD=BD\left(cmt\right)\)\(\Rightarrow\Delta BDH\)cân tại D
c, Nối D với C, H với E
Ta có: \(HD=BD\left(cmt\right)\\ BD=CE\left(gt\right)\)\(\Rightarrow HD=CE\)
Tứ giác DHEC có: \(HD//EC\left(gt\right)\\ HD=EC\left(cmt\right)\)\(\Rightarrow\)DHEC là hình bình hành \(\Rightarrow\)2 đường chéo DE và HC cắt nhau tại trung điểm của mỗi đường \(\Rightarrow\)I là trung điểm của DE
d,
À câu này mình từng làm 1 lần rồi nè: https://olm.vn/hoi-dap/question/1274928.html
a) ta có AD là pân giác của góc A=> DB/DC=AB/AC=12/20=3/5 =>DB=[28/(3+5)].3=10,5( tổng tỷ)=>CD=28-10,5=17,5 ta có ED/AB=CD/CB=>ED/12=17,5/28=> ED=7,5 b) ta có diện tích ABC/ADB=CD/CB=17,5/28=> S/ADB=17,5/28=> diện tích ADB=S.10,5/28 ta lại có diện tích ADC/ABC=DC/BC=17,5/28=> diện tích ADC= (17,5/28).S TA CÓ diên tích ADE/ADC=AE/AC=DE/AC=7,5/20 (DE//AB=> góc DAE=góc ADE) => diện tích ADE=diện tích ADC .7,5/20 =S.26,25/112 diện tích DECthì bạn lấy diện tích ADC-ADE=S.43,75/112
a) Xét tam giác AHD và tam giác CKD có:
AHD=CKD=90
\(D_1=D_2\) (2 góc đối đỉnh)
=> tam giác AHD đồng dạng tam giác CKD (g-g)
=> đpcm
b) Xét tam giác AHB và tam giác CKB có
AHB=BKC=90
ABD=DBC ( BD là tia phân giác ABC)
=> Tam giác AHB đồng dạng CKB (g-g)
=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)
a, MD là tia phân giác \(\Delta ABM\)
=> \(\frac{AD}{BD}=\frac{AM}{BM}\) (1)
ME là tia phân giác \(\Delta ACM\)
=> \(\frac{AE}{CE}=\frac{AM}{MC}\) (2)
AM là đường trung tuyến
=> MB = MC
=> \(\frac{AM}{BM}=\frac{AM}{MC}\)
Ta lét đảo => \(DE//BC\)
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC