K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

Có  AM+AN >MN

      AB+AC >BC

Mà M thuộc AB, N thuộc AC

-> AB+AC>AM+AN

-> BC>MN

24 tháng 2 2022

chx chắc BC > MN

22 tháng 1 2022

Xét \(\Delta AMN\) có : \(AM+AN>MN\)

Xét  \(\Delta ABC\) có : \(AB+AC>BC\)

Mà \(\left\{{}\begin{matrix}AM< AB\\AN< AC\end{matrix}\right.\) \(\Leftrightarrow AB+AC>AM+AN\)

\(\Leftrightarrow BC>MN\)

22 tháng 1 2022

Chị có thể làm cách sử dụng góc A<90 đc ko ạ?

5 tháng 10 2018

Kẻ đoạn thẳng AM. Xét tam giác MAC. Chứng minh tương tự như bài 1.4 ta có MN < a, trong đó a là đoạn lớn nhất trong hai đoạn thẳng MA và MC. Nếu ta chứng minh được

MA < AC và MC < AC thì sẽ suy ra được a < AC, từ đó có MN < AC.

Trong tam giác ABC có AB ≤ AC, M ∈ BC (M ≠ B, M ≠ C); Chứng minh tương tự bài 1.4, ta có AM < AC. Mặt khác MC < BC ≤ CA. Vậy a < AC, suy ra MN < AC.

14 tháng 1 2017

Mi tự vẽ hình nha.

Ta có :\(\widehat{BMC};\widehat{CNM}>\widehat{A}\ge90^0\)(\(\widehat{BMC};\widehat{CNM}\)là 2 góc ngoài của\(\Delta AMC\)

\(\Rightarrow\Delta BMC,\widehat{BMC}\)tù nên cạnh BC là cạnh lớn nhất ;\(\Delta CNM,\widehat{CNM}\) tù nên CM là cạnh lớn nhất

=> BC > MC ; MC > MN => BC > MN

Bài 1.

a)\(\Delta ABC\)có AB = AC nên cân tại A,suy ra\(\widehat{B}=\widehat{C}\)

\(\Delta ADB,\Delta AEC\)có : AB = AC ;\(\widehat{B}=\widehat{C}\); DB = EC nên\(\Delta ADB=\Delta AEC\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAD}=\widehat{CAE}\)(2 góc tương ứng)

Trên tia đối của DA lấy O sao cho DO = DA.

\(\Delta ADE,\Delta ODB\)có : AD = OD ;\(\widehat{ADE}=\widehat{ODB}\)(đối đỉnh) ; DE = DB nên\(\Delta ADE=\Delta ODB\left(c.g.c\right)\)

\(\Rightarrow\widehat{DAE}=\widehat{DOB}\)(2 góc tương ứng) ; AE = OB (2 cạnh tương ứng)

\(\widehat{AEC}>\widehat{B}=\widehat{C}\)(vì\(\widehat{AEC}\)là góc ngoài của\(\Delta ABE\))

=>\(\Delta AEC,\widehat{AEC}>\widehat{C}\Rightarrow AC>AE\Leftrightarrow AB>BO\Rightarrow\widehat{BOA}>\widehat{BAO}\Leftrightarrow\widehat{DAE}>\widehat{BAD}=\widehat{CAE}\)

Vậy\(\widehat{DAE}\)là góc lớn nhất trong 3 góc