K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2018

nao giai duoc nhanh va dung nhat cho 10 cai k thiet!

17 tháng 12 2018

tham khảo  https://olm.vn/hoi-dap/detail/90247496237.html

9 tháng 4 2019

A, 

xét \(\Delta ABD\)và \(\Delta ACD\)

CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)

SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C)  (1)

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)

MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90

B,  (1) => BC=DC=1/2 BC=8

ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ

\(AB^2=AD^2+BD^2\)

=> AD^2=36

=>AD=6

9 tháng 4 2019

c, vì M là trọng tâm nên AM=2/3AD=4

d

12 tháng 6 2017

Bài 2:

A B C D E H 1 2

a) Xét hai tam giác ABD và EBD có:

AB = EB (gt)

\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)

BD: cạnh chung

Vậy: \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)

Suy ra: \(\widehat{BAD}=\widehat{BED}\) (hai góc tương ứng)

\(\widehat{BAD}=90^o\)

Do đó \(\widehat{BED}=90^o\) hay DE \(\perp\) BE.

b) Vì AB = EB (gt)

\(\Rightarrow\) \(\Delta ABE\) cân tại B

\(\Rightarrow\) BD là đường phân giác đồng thởi là đường trung trực

Do đó: BD là đường trung trực của AE. (1)

c) Xét hai tam giác vuông ADH và EDC có:

DA = DE (\(\Delta ABD=\Delta EBD\))

\(\widehat{ADH}=\widehat{EDC}\) (đối đỉnh)

Vậy: \(\Delta ADH=\Delta EDC\left(cgv-gn\right)\)

Suy ra: AH = EC (hai cạnh tương ứng)

Ta có: BH = AB + AH

BC = EB + EC

Mà AB = EB (gt)

AH = EC (cmt)

\(\Rightarrow\) BH = BC

\(\Rightarrow\) \(\Delta BHC\) cân tại B

\(\Rightarrow\) BD là đường phân giác đồng thời là đường cao của HC hay

BD \(\perp\) HC (2)

Từ (1) và (2) suy ra: AE // HC (đpcm).

14 tháng 6 2017

bạn ơi . sao lại cạnh góc vuông - góc nhọn vậy

10 tháng 4 2016

a,tam giác abh = tam giác ach (g.c.g)

=>bh=hc

=>góc ahb=góc ahc mà mà góc ahb + góc ahc=180độ 

=>góc ahb=góc ahc =90độ 

=>ah vuông góc với bc

b,bh=36:2=18.áp dụng định lí PY-TA-GO,ta có:

ab^2=ah^2+bh^2

=>ah^2=ab^2-bh^2

=>ah^2=30^2-18^2

=>ah=24

3 tháng 5 2016

a)

xét tam giác ABH và tam giác EBH có:

BH(chung)

BAH=BEH=90

ABH=EBH(gt)

=> tam giác ABH=EBH(CH-GN)

b)

gọi giao của AE và BH là K

xét tam giác ABK và tam giác EBK có:

ABK=EBK(gt)

BK(chung)

AB=EB(tam giác ABH=EBH)

=> tam giác ABK=EBK(c.g.c)

=>_ KA=KE 

    |_BKA=EKB mà AKB+EKB=180=> AKB=AKE=180:2=90=> BH_|_AE

=> BH là đường trung trực của AE

c)

theo câu a, ta có tam giác ABH=EHB(CH-GN)=>HA=HE

ta có tam giác HEC vuông tại E=> HC là cạnh lớn nhất trong tam giác HEC

=> HC>HE mà HE=HA=> HC>HA

d)

theo câu a, ta có tam giác ABH=EBH(CH-GN)

=> HA=HE

xét tam giác AHI và tam giác EHC có:

AH=AE(cmt)

IAH=CEH=90

AHI=EHC(2 góc đđ)

=> tam giác AHI=EHC(g.c.g)

=> AI=EC

AB=EB( tam giác ABH=EBH)

BI=AI+AB

BC=BE+EC

=> BI=BC=> tam giác BIC cân tại B có BH là đường phân giác => BH đồng thời là đường cao=> BH_|_IC

3 tháng 5 2016

câu mấy thế

13 tháng 2 2018

a) theo đl pytago:
AB^2+AC^2=BC^2
=> AC^2=BC^2-AB^2
=>AC^2=144
=>AC=căn 144 = 12cm
Vì BC>AC>AB=>góc A > góc B > góc C

2 tháng 4 2020

Xet tam giac ABC co goc A = 90 do (gt)

Ta co AB^2 + AC^2 = BC^2 (dinh ly Pi-ta-go)

=>AC^2 = BC^2 - AB^2 = 15^2 - 9^2 = 225 - 81 = 144

=>AC = can bac 2 cua 144 = 12

Vi BC > AC > AB => goc A > goc B > goc C

Xet tam giac ABC co:

BA = BD (gt)  (1)

goc BAE = goc BDE = 90 do (gt)  (2)

BE (canh chung)  (3)

Tu (1), (2), (3) => tam giac EBA = tam giac EBD (canh huyen-canh goc vuong)

Cau hoi tiep theo tui bo tay.com

21 tháng 3 2019

a, gọi I là giao điểm của AH và BK 

xét tam giácABI và tam giác HBI có

           BI cạnh chung

           \(\widehat{ABI}\)=\(\widehat{HBI}\)(gt)

\(\Rightarrow\)tam giác ABI= tam giác HBI (cạnh góc vuông-góc nhọn)

suy raBA=BH

b, xét tam giác ABK và tam giác HBK có

               AB=BH

             \(\widehat{ABK}\)=\(\widehat{HBK}\)(gt)

            BK cạnh chung

suy ra tam giác ABK=tam giac HBK(c.g.c)

\(\Rightarrow\)\(\widehat{A}\)=\(\widehat{BHK}\)=90 độ suy ra tam giác BHK vuông

c,vì AB=BH nên tam giác ABH là tam giác cân tại B

21 tháng 3 2019

Bài 2. 

Tam giác BHC vuông tại H

=> \(\widehat{CBH}=90^o-\widehat{BCH}\)

=> 2\(\widehat{CBH}=180^o-2.\widehat{BCH}=180^o-2.\widehat{BCA}\)(1)

Ta lại có: \(\widehat{BAC}=180^o-\left(\widehat{ABC}+\widehat{BCA}\right)=180^o-2.\widehat{BCA}\)(2)vì tam giác ABC cân tại A

Từ (1), (2)=> dpcm