K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2018

a) theo đl pytago:
AB^2+AC^2=BC^2
=> AC^2=BC^2-AB^2
=>AC^2=144
=>AC=căn 144 = 12cm
Vì BC>AC>AB=>góc A > góc B > góc C

2 tháng 4 2020

Xet tam giac ABC co goc A = 90 do (gt)

Ta co AB^2 + AC^2 = BC^2 (dinh ly Pi-ta-go)

=>AC^2 = BC^2 - AB^2 = 15^2 - 9^2 = 225 - 81 = 144

=>AC = can bac 2 cua 144 = 12

Vi BC > AC > AB => goc A > goc B > goc C

Xet tam giac ABC co:

BA = BD (gt)  (1)

goc BAE = goc BDE = 90 do (gt)  (2)

BE (canh chung)  (3)

Tu (1), (2), (3) => tam giac EBA = tam giac EBD (canh huyen-canh goc vuong)

Cau hoi tiep theo tui bo tay.com

9 tháng 4 2019

A, 

xét \(\Delta ABD\)và \(\Delta ACD\)

CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)

SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C)  (1)

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)

MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90

B,  (1) => BC=DC=1/2 BC=8

ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ

\(AB^2=AD^2+BD^2\)

=> AD^2=36

=>AD=6

9 tháng 4 2019

c, vì M là trọng tâm nên AM=2/3AD=4

d

a: \(\widehat{HAB}=90^0-60^0=30^0\)

b: Xét ΔAHI và ΔADI có

AH=AD

HI=DI

AI chung

Do đó: ΔAHI=ΔADI

Ta có: ΔAHD cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

c: Xét ΔAHK và ΔADK có

AH=AD

\(\widehat{HAK}=\widehat{DAK}\)

AK chung

Do đó: ΔAHK=ΔADK

Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)

=>DK//AB

12 tháng 10 2019

Bài 3:

Xét 2 \(\Delta\) \(AMO\)\(BNO\) có:

\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)

\(OA=OB\) (vì O là trung điểm của \(AB\))

\(AM=BN\left(gt\right)\)

=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)

=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)

\(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)

=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)

=> \(M,O,N\) thẳng hàng. (1)

Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)

=> \(OM=ON\) (2 cạnh tương ứng) (2)

Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)

Bài 4:

Chúc bạn học tốt!

d: Ta có: \(\widehat{KBC}=\widehat{MBD}\)

\(\widehat{KCB}=\widehat{NCE}\)

mà \(\widehat{MBD}=\widehat{NCE}\)

nên \(\widehat{KBC}=\widehat{KCB}\)

hay ΔKBC cân tại K

=>KB=KC

Ta có: KB+BM=KM

KC+CN=KN

mà KB=KC

và BM=CN

nên KM=KN

=>ΔKNM cân tại K