\(a,\overrightarrow{AB}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng

30 tháng 3 2017

Ta có: CB= a√2; = 450

Vậy = -. = -||: ||. cos450 = -a.a√2.

=> = -a2

bài 1: cho tam giác ABC đều cạnh a trọng tâm G tính các tích vô hướng \(\overrightarrow{AB}.\overrightarrow{AC}\) ; \(\overrightarrow{AC}.\overrightarrow{CB}\) ; \(\overrightarrow{AG.}\overrightarrow{AB}\) ; \(\overrightarrow{GB.}\overrightarrow{GC}\) theo a bài 2: cho tam giác ABC vuông tại A có AB =a BC=2a tính các tích vô hướng \(\overrightarrow{AB.}\overrightarrow{AC}\) ; \(\overrightarrow{AC.}\overrightarrow{CB}\) ; \(\overrightarrow{AB.}\overrightarrow{BC}\)...
Đọc tiếp

bài 1: cho tam giác ABC đều cạnh a trọng tâm G tính các tích vô hướng \(\overrightarrow{AB}.\overrightarrow{AC}\) ; \(\overrightarrow{AC}.\overrightarrow{CB}\) ; \(\overrightarrow{AG.}\overrightarrow{AB}\) ; \(\overrightarrow{GB.}\overrightarrow{GC}\) theo a

bài 2: cho tam giác ABC vuông tại A có AB =a BC=2a tính các tích vô hướng \(\overrightarrow{AB.}\overrightarrow{AC}\) ; \(\overrightarrow{AC.}\overrightarrow{CB}\) ; \(\overrightarrow{AB.}\overrightarrow{BC}\) theo a

bài 3: cho tam giác ABC có AB =4 BC=8 AC=6

a) tính \(\overrightarrow{AB.}\overrightarrow{AC}\) từ đó suy ra cos A

b) gọi G là trọng tâm của tam giác ABC tính tích vô hướng \(\overrightarrow{AG.}\overrightarrow{BC}\)

bài 4: cho tam giác ABC vuông tại A có BC =a\(\sqrt{3}\) AM là trung tuyến và \(\overrightarrow{AM.}\overrightarrow{BC}\) =\(\frac{a^2}{2}\) tính AB và AC theo a

0
19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

30 tháng 3 2017

Giải bài 6 trang 27 sgk Hình học 10 | Để học tốt Toán 10

Gọi M là trung điểm của BC

Xét ΔABC có AM là đường trung tuyến

nên \(\overrightarrow{AB}+\overrightarrow{AC}=2\cdot\overrightarrow{AM}\)

\(\Leftrightarrow\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\cdot\dfrac{a\sqrt{3}}{2}=a\sqrt{3}\)

\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=CB=a\)

19 tháng 5 2017

A B C a
a) \(\overrightarrow{AB}.\overrightarrow{AC}=AB.AC.cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=a.a.cos60^o=a.a.\dfrac{1}{2}\)\(=\dfrac{a^2}{2}\).
\(\overrightarrow{AB}.\overrightarrow{BC}=-\overrightarrow{BA}.\overrightarrow{BC}==-a.a.cos\left(\overrightarrow{BA},\overrightarrow{BC}\right)\)\(=-a.a.cos60^o=-\dfrac{a^2}{2}\).

21 tháng 11 2018

\(\overrightarrow{AB}.\overrightarrow{AC}=\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|.cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=a.a.cos60=\dfrac{1}{2}a^2\)\(\overrightarrow{AB}.\overrightarrow{BC}=-\overrightarrow{BA}.\overrightarrow{BC}=-\left(\overrightarrow{BA}.\overrightarrow{BC}\right)=-\left(\left|\overrightarrow{BA}\right|.\left|\overrightarrow{BC}\right|.cos\left(\overrightarrow{BA},\overrightarrow{BC}\right)\right)=-\left(a.a.cos60\right)=-\dfrac{1}{2}a^2\)

24 tháng 8 2020

Còn cách khác không ạ, e mới học đến quy tắc hình bình hành

NV
24 tháng 8 2020

a/ Đặt \(\overrightarrow{u}=\overrightarrow{AB}+3\overrightarrow{AC}\Rightarrow\left|\overrightarrow{u}\right|^2=\left(\overrightarrow{AB}+3\overrightarrow{AC}\right)^2\)

\(=AB^2+9AC^2+6\overrightarrow{AB}.\overrightarrow{AC}=10AB^2+6AB^2.cos60^0=13AB^2\)

\(\Rightarrow\left|\overrightarrow{u}\right|=AB\sqrt{13}=a\sqrt{13}\)

b/ Chắc 2 cái trong module kia phải là vecto chứ nhỉ?

\(\overrightarrow{v}=2\overrightarrow{AB}+\overrightarrow{AH}=2\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}=\frac{5}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}\)

\(\Rightarrow\left|\overrightarrow{v}\right|^2=\frac{9}{4}AB^2+\frac{1}{4}AC^2+\frac{5}{2}\overrightarrow{AB}.\overrightarrow{AC}=\frac{5}{2}AB^2+\frac{5}{2}AB^2.cos60^0\)

\(=\frac{15}{4}AB^2\Rightarrow\left|\overrightarrow{v}\right|=\frac{AB\sqrt{15}}{2}=\frac{a\sqrt{15}}{2}\)