Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
Xét ΔCHO vuông tại H , có : cos COH = \(\dfrac{OH}{OC }\)( tỉ số lượng giác )
⇔ cos COH = \(\dfrac{R/2}{R}\)=\(\dfrac{1}{2}\)=> \(\widehat{COH }\) = 60 độ
=> \(\widehat{BC }\) = \(\widehat{COH }\) = 60 độ
C/m tương tự => \(\widehat{BD }\) = 60 độ . Ta có \(\widehat{BC }\) + \(\widehat{BD }\) = 60 + 60 = 120 độ
còn lại bạn tự làm nốt nhá
Bài 1 : Bài giải
Hình tự vẽ //
a) Ta có DOC = cung DC
Vì DOC là góc ở tâm và DAC là góc chắn cung DC
=>DOC = 2 . AOC (1)
mà tam giác AOC cân =>AOC=180-2/AOC (2)
Từ (1) ; (2) ta được DOC + AOC = 180
b) Góc ACD là góc nội tiếp chắn nữa đường tròn
=>ACD=90 độ
c) c) HC=1/2*BC=12
=>AH=căn(20^2-12^2)=16
Ta có Sin(BAO)=12/20=>BAO=36.86989765
=>AOB=180-36.86989765*2=106.2602047
Ta có AB^2=AO^2+OB^2-2*OB*OA*cos(106.2602047)
<=>AO^2+OA^2-2OA^2*cos(106.2602047)=20^2
=>OA=12.5
a)Sửa đề: BM=CN
Xét (O) có
OB là bán kính(gt)
O là trung điểm của BC(gt)
Do đó: BC là đường kính của (O)
Xét (O) có
ΔBMC nội tiếp đường tròn(B,M,C∈(O))
BC là đường kính của (O)(cmt)
Do đó: ΔBMC vuông tại M(Định lí)
Xét (O) có
ΔBNC nội tiếp đường tròn(B,N,C∈(O))
BC là đường kính của (O)(cmt)
Do đó: ΔBNC vuông tại N(Định lí)
Xét ΔBMC vuông tại M và ΔCNB vuông tại N có
BC là cạnh chung
\(\widehat{MBC}=\widehat{NCB}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBMC=ΔCNB(cạnh huyền-góc nhọn)
⇒BM=CN(hai cạnh tương ứng)
b) Xét ΔOBM và ΔOCN có
OB=OC(=R)
OM=ON(=R)
BM=CN(cmt)
Do đó: ΔOBM=ΔOCN(c-c-c)
em ko hiểu câu a