K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2015

a) Hai tam giác = nhau theo trường hợp cạnh huyền góc nhọn (tự c/m)

b) Từ 2 tam giác = nhau ở phần a => AD= DE

Ta có tam giác ADF =  tam giác EDC theo trường hợp góc cạnh góc (tự c/m)

=> DF= DC ( 2 cạnh tg ứng)

c) Xét tam giác ADF, có : góc A= 90 độ

=> DF là cạnh lớn nhất (quan hệ giữa góc và cạnh đối diện)

=> AD  < DF 

Mà DF= DC (chứng minh b)

=> AD < DC (đpcm)

5 tháng 8 2015

b) Xét tam giác ADF và tam giác EDC, có: 

Góc A= góc E (=90 độ)

AD= AE (vừa mình đã ns rồi) 

Góc ADF= góc EDC (đối đỉnh)

Từ 3 điều trên => tam  giác ADF =  tam giác EDC (g-c-g)

=> DF= DC (2 cạnh tg ứng)

1 tháng 7 2018

BD là phân giác góc ABC => góc ABD = góc EBD

=> tg ABD = tg EBD ( cạnh huyền - góc nhọn) => AB=BE

Gọi I là giao điểm của BD và AE
Ta có: tg ABI = tg EBD (c-g-c) => AI = EI và  góc ABI = góc EBI = 90độ

=> BD là trung trực của AE

c. Ta có tg ABD = tg EBD => AD = ED 

MÀ xét tg DEC vuông tại E có: ED < DC (cạnh gv < cạnh huyền)

=> DA<DC

1 tháng 5 2019

a, Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E ta có:

BD:cạnh chung; góc ABD= góc EBD(gt)

Do đó tam giác ABD=tam giác EBD(cạnh huyền - góc nhọn)

=> AB=EB; AD=ED(cặp cạnh tương ứng)

Vì AB=EB; AD=ED nên B là D nằm trên đường trung trực của AE

=> BD là đường trung trực của AE(đpcm)

b, Xét tam giác ADF và tam giác EDC ta có:

góc FAD=góc CED(=90độ);AD=ED(cmt); góc ADF=góc EDC(đối đỉnh)

Do đó tam giác ADF=tam giác EDC(g.c.g)

=> DF=DC(cặp cạnh tương ứng) (đpcm)

c, Xét tam giác DEC vuông tại E ta có:

DE<DC(do trong tam giác vuông cạnh huyền lớn nhất)

mà DE=DA=> DA<DC(đpcm)

d, Vì tam giác ADF=tam giác EDC(cm câu b)

=> AF=EC(cặp cạnh tương ứng)

Ta có: BF=BA+AF; BC=BE+EC

mà BA=BE;AF=EC(đã cm)

=> BF=BC

=> tam giác BCF cân tại B

mặc khác ta có: BA=BE(cm câu a)

=> tam giác ABE cân tại B

Xét tam giác BCF và tam giác ABE cân tại B ta có:

góc BAE=\(\dfrac{180^o-\text{góc}ABE}{2}\) ;góc BFC=\(\dfrac{180^o-\text{góc}FBC}{2}\)

=> góc BAE=góc BFC

=> AE//CF(do có 1 cặp góc bằng nhau ở vị trí đồng vị) (đpcm)

15 tháng 2 2021

san8iiiiii

 

a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

b: XétΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

c: ta có: ΔABD=ΔEBD

nên BA=BE và DA=DE

=>BD là đường trung trực của AE

hay BD\(\perp\)AE