Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Bunhiacopxki, ta có : \(10^2=\left(1.\sqrt{x}+2.\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left(x+y\right)\)
\(\Rightarrow x+y\ge\frac{10^2}{1^2+2^2}=20\)\(\Rightarrow x+y\ge20\)
cách khác:
Áp dụng bất đẳng thức Cô Si : ta có
\(x+4\ge2\sqrt{x.4}=4\sqrt{x}\left(1\right).\)
\(y+16\ge2\sqrt{y.16}=8\sqrt{y}\left(2\right).\)
cộng vế với vế (1) và (2) ta có : \(x+y+20\ge4\left(\sqrt{x}+2\sqrt{y}\right)=40.\)
=> \(x+y\ge20.\)dấu "=" xảy ra khi x = 4 ; y = 16
Áp dụng bđt Bunhiacopxki , ta có : \(10^2=\left(1.\sqrt{x}+2.\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left(x+y\right)\)
\(\Rightarrow5\left(x+y\right)\ge100\Rightarrow x+y\ge20\) (đpcm)
Áp dụng BĐT Cauchy–Schwarz ta có:
\(\left(1^2+2^2\right)\left(x+y\right)\ge\left(\sqrt{x}+2\sqrt{y}\right)^2\)
<=> \(5\left(x+y\right)\ge100\)
<=> \(x+y\ge20\)
Dấu "=" xảy ra <=> \(x=4;\)\(y=16\)
ban duong quynh giang oi bdt ay phai la bunhiacopxki moi dung
Áp dụng BĐT Bu nhi a cốp x ki
\(\left(1.\sqrt{x}+2.\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]=5\left(x+y\right)\)
=> \(\left(\sqrt{x}+2\sqrt{y}\right)^2\le5\left(x+y\right)\)
=> \(10^2\le5\left(x+y\right)\)
Tiếp nha
a) \(A=\frac{x+y-2\sqrt{xy}}{x-y}\left(ĐK:xy\ge0;x\ne y\right)\)
\(=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
=>đpcm
b) Có: \(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)
=>\(\sqrt{x}=\sqrt{2}+1\)
\(y=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\)
=>\(\sqrt{y}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)
Nên: \(A=\frac{\sqrt{2}+1-\sqrt{2}+1}{\sqrt{2}+1+\sqrt{2}-1}=\frac{2}{2\sqrt{2}}=\frac{1}{\sqrt{2}}\)
b2 \(\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}=\sqrt{x}.\sqrt{1-\frac{1}{x}}+\sqrt{y}.\)\(\sqrt{y}.\sqrt{1-\frac{1}{y}}+\sqrt{z}.\sqrt{1-\frac{1}{z}}\)rồi dung bunhia là xong
A= \(\frac{1}{a^3}\)+ \(\frac{1}{b^3}\)+ \(\frac{1}{c^3}\)+ \(\frac{ab^2}{c^3}\)+ \(\frac{bc^2}{a^3}\)+ \(\frac{ca^2}{b^3}\)
Svacxo:
3 cái đầu >= \(\frac{9}{a^3+b^3+c^3}\)
3 cái sau >= \(\frac{\left(\sqrt{a}b+\sqrt{c}b+\sqrt{a}c\right)^2}{a^3+b^3+c^3}\)
Cô-si: cái tử bỏ bình phương >= 3\(\sqrt{abc}\)
=> cái tử >= 9abc= 9 vì abc=1
Còn lại tự làm
\(\sqrt{x}=10-2\sqrt{y}\)
\(\Rightarrow x+y=\left(10-2\sqrt{y}\right)^2+y=5y-40\sqrt{y}+100\)
\(=5\left(\sqrt{y}-4\right)^2+20\ge20\)