Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow10n^2+25n-16n-40+43⋮2n+5\)
\(\Leftrightarrow2n+5\in\left\{1;-1;43;-43\right\}\)
hay \(n\in\left\{-2;-3;19;-24\right\}\)
b: \(\Leftrightarrow7n^2+9n-4⋮3n+5\)
\(\Leftrightarrow21n^2+27n-12⋮3n+5\)
\(\Leftrightarrow21n^2+35n-8n-\dfrac{40}{3}+\dfrac{4}{3}⋮3n+5\)
\(\Leftrightarrow3n+5\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{-2;-1;-3\right\}\)
Đây là toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải
Chứng minh bằng phương pháp phản chứng:
Giả sử A ⋮ 121 ∀ n khi đó ta có với n = k( k \(\in\)n) thì:
A = k2 + 3k + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)
Với n = k + 1 thì
A = (k + 1)2 + 3(k + 1) + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)
⇒ (k + 1).(k + 1) + 3k + 3 + 5⋮ 121
⇒ k2 + k + k + 1 + 3k + 3 + 5 ⋮ 121
⇒ (k2 + 3k + 5) + (k + k) + (1 + 3)⋮ 121
⇒ (k2 + 3k + 5) + 2k + 4 ⋮ 121
⇒ 2k + 4 ⋮ 121
⇒ 2.(k + 2) ⋮ 121
⇒ k + 2 ⋮ 121 (1)
Mà ta có: k2 + 3k + 5 ⋮ 121
⇒ k(k + 2) + (k + 2) + 3 ⋮ 121
⇒ (k + 2)(k + 1) + 3 ⋮ 121 (2)
Kết hợp (1) và (2) ta có: 3 ⋮ 121 (vô lý)
Vậy điều giả sử là sai hay
A = n2 + 3n + 5 không chia hết cho 121 với mọi n (đpcm)
Gọi ƯCLN(9n+24; 3n+4) là d. Ta có:
9n+24 chia hết cho d
3n+4 chia hết cho d => 9n+12 chia hết cho d
=> 9n+24-(9n+12) chia hết cho d
=> 12 chia hết cho d
=> d thuộc Ư(12)
=> d thuộc {1; -1; 3; -3; 4; -4; 12; -12}
Giả sử ƯCLN(9n+24; 3n+4) khác 1
=> 3n+4 chia hết cho 4
=> 3n+4-4 chia hết cho 4
=> 3n chia hết cho 4
=> nchia hết cho 4
=> n = 4k
=> Để ƯCLN(9n+24; 3n+4) = 1 thì n \(\ne\) 4k
1.c)1. Xét n chẵn, hai số đều chẵn → không nguyên tố cùng nhau
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau
9n+24=3(3n+8)
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a)
→k cũng là ước số của (3n+8)−(3n+4)=4 ->chẵn (b)
Từ (a) và (b)→ Mâu thuẫn
Vậy với nn lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau
Ta có: n^2 + 3n + 5 = n^2 - 4n + 4 + 7n +1 = n^2 - 2n - 2n+4 + 7n+1 = n(n-2) -2(n-2) + 7n+1 = (n-2)^2 +7n+1 chia hết cho n-2
Vì (n-2)^2 chia hết cho n-2 nên 7n+1 chia hết cho n-2
Mà 7n-14 chia hết cho n-2 (nhân n-2 với 7) nên 7n+1 - (7n-14) chia hết cho n-2
=> 15 chia hết cho n-2
Tới bước này chắc hẳn pn làm đc
3n+2 chia hết cho n-2 nên
3n-6+8 chia hết cho n-2
3.(n-2)+8 chia hết cho n-2
=> 8 chia hết cho n-2
=> n-2\(\in\)Ư(8)={1;-1;2;-2;4;-4;8;-8}
=> n={3;1;2;0;6;-2;10;-6}
\(11.5^{2n}+2^{3n+2}+2^{3n+1}\)
\(=17.5^{2n}-6.5^{2n}+2^{3n}.6\)
\(=17.5^{2n}-6\left(5^{2n}-2^{3n}\right)\)
\(=17.5^{2n}-6\left(25^n-8^n\right)\)
Có \(17.5^{2n}⋮17\)
\(25^n-18^n⋮\left(25-18\right)⋮17\left(với\forall n\right)\)
\(\RightarrowĐpcm\)
11.52n + 23n+2 + 23n+1
= 11.25n + 4.23n + 2.23n
= 17.25n - 6.25n + 2.23n.(2+1)
= 17.25n - 6.25n + 6.23n
= 17.25n - 6.(25n - 23n)
= 17.25n - 6.(25n - 8n)
mà 25 - 8 = 17 chia hết cho 17
=> 25n - 8n chia hết cho 17
=> 17.25n - 6.(25n - 8n) chia hết cho 17
=> đpcm
Ta có :
A = 9n+2 + 3n+2 - 9n + 3n
A = 9n . ( 92 - 1 ) + 3n . ( 32 + 1 )
A = 9n . 80 + 3n . 10
A = 10 . ( 9n . 8 + 3n ) \(⋮\)10
Vậy ...