K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

\(9^{n+2}+3^{n+2}-9^n+3^n\)

\(=9^n.9^2+3^n.3^2-9^n+3^2\)

\(=9^n\left(9^2-1\right)+3^n\left(3^2+1\right)\)

\(=9^n\left(80\right)+3^n\left(10\right)\)

\(\text{Do 80 chia hết cho 10 }\Rightarrow9^n.80\text{chia hết cho 10}\)

\(\text{Do 10 chia hết cho 10}\Rightarrow3^n.10\text{chia hết cho 10}\) 

a: \(\Leftrightarrow10n^2+25n-16n-40+43⋮2n+5\)

\(\Leftrightarrow2n+5\in\left\{1;-1;43;-43\right\}\)

hay \(n\in\left\{-2;-3;19;-24\right\}\)

b: \(\Leftrightarrow7n^2+9n-4⋮3n+5\)

\(\Leftrightarrow21n^2+27n-12⋮3n+5\)

\(\Leftrightarrow21n^2+35n-8n-\dfrac{40}{3}+\dfrac{4}{3}⋮3n+5\)

\(\Leftrightarrow3n+5\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{-2;-1;-3\right\}\)

30 tháng 7 2021

cùng nhau  ko phải bằng nhau

4 tháng 8 2015

Gọi ƯCLN(9n+24; 3n+4) là d. Ta có:

9n+24 chia hết cho d

3n+4 chia hết cho d => 9n+12 chia hết cho d

=> 9n+24-(9n+12) chia hết cho d

=> 12 chia hết cho d

=> d thuộc Ư(12)

=> d thuộc {1; -1; 3; -3; 4; -4; 12; -12}

Giả sử ƯCLN(9n+24; 3n+4) khác 1

=> 3n+4 chia hết cho 4

=> 3n+4-4 chia hết cho 4

=> 3n chia hết cho 4

=> nchia hết cho 4

=> n = 4k

=> Để ƯCLN(9n+24; 3n+4) = 1 thì n \(\ne\) 4k

4 tháng 10 2018
13 tháng 11 2017

Câu hỏi tương tự nha

13 tháng 11 2017

1.c)1. Xét n chẵn, hai số đều chẵn → không nguyên tố cùng nhau 
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau 
9n+24=3(3n+8)
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8 
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a) 
→k cũng là ước số của (3n+8)−(3n+4)=4 ->chẵn (b)
Từ (a) và (b)→ Mâu thuẫn 
Vậy với nn lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau

6 tháng 2 2022

Chứng minh với mọi số nguyên dương n thì

3^n + 2 – 2^n + 2 + 3^n – 2^n chia hết cho 10

                                      Giải

3^n + 2 – 2^n + 2 + 3^n – 2^n

= 3^n+2 + 3^n – 2^n + 2 -  2^n

= 3^n+2 + 3^n – ( 2^n + 2 + 2^n )

= 3^n . 3^2 + 3^n – ( 2^n . 2^2 + 2^n )

= 3^n . ( 3^2 + 1 ) – 2^n . ( 2^2 + 1 )

= 3^n . 10 – 2^n . 5

= 3^n.10 – 2^n -1.10

= 10.( 3^n – 2^n-1)

Vậy 3^n+2 – 2^n +2 + 3^n – 2^n chia hết cho 10

Giả sử n2+9n+24 chia hết cho 25

=> (n+3)2+15 chia hết cho 5

=> n+3 chia hết cho 5

=> (n+3)2 chia hết cho 25

=> (n+3)2+15 không chia hết cho 25 ( Vô lý)

=> giả sử sai 

=> đccm

7 tháng 3 2022

Giả sử \(n^2+9n+24⋮25\)\(\Rightarrow n^2+9n+24⋮5\)(1)

Ta có \(n^2+9n+24\)\(=n^2+2n+7n+14+10\)\(=n\left(n+2\right)+7\left(n+2\right)+10\)\(=\left(n+2\right)\left(n+7\right)+10\)(2)

Từ (1) và (2)\(\Rightarrow\left(n+2\right)\left(n+7\right)+10⋮5\)

Mà \(10⋮5\)nên \(\left(n+2\right)\left(n+7\right)⋮5\), mà 5 là số nguyên tố nên 1 trong 2 số \(n+2;n+7\)chia hết cho 5

Khi \(n+2⋮5\)thì \(n+2+5⋮5\)hay \(n+7⋮5\)\(\Rightarrow\left(n+2\right)\left(n+7\right)⋮25\)

Lại có \(\left(n+2\right)\left(n+7\right)+10⋮25\)(giả sử) nên \(10⋮25\)(vô lí)

Khi \(n+7⋮5\)thì \(n+7-5⋮5\)hay \(n+2⋮5\)\(\Rightarrow\left(n+2\right)\left(n+7\right)⋮25\)

Lại có \(\left(n+2\right)\left(n+7\right)+10⋮25\)(giả sử) nên \(10⋮25\)(vô lí)

Vậy điều giả sử sai \(\Rightarrow n^2+9n+24⋮̸25\)

AH
Akai Haruma
Giáo viên
3 tháng 3 2020

Lời giải:

$11.5^{2n}+2^{3n+2}+2^{3n+1}=11.25^n+8^n.4+8^n.2=11.25^n+6.8^n$

Vì $25\equiv 8\pmod {17}$

$\Rightarrow 11.5^{2n}+2^{3n+2}+2^{3n+1} =11.25^n+6.8^n\equiv 11.8^n+6.8^n\equiv 17.8^n\equiv 0\pmod {17}$

Hay $11.5^{2n}+2^{3n+2}+2^{3n+1}\vdots 17$

Hay $

3 tháng 3 2020

Này Akai Haruma, cho mk hỏi mod 17 nghĩa là gì vậy