Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Đặt n + 1945 = a² (1) (a là số tự nhiên)
Đặt n + 2004 = b² (2) (b là số tự nhiên)
Do (n + 2004) > (n + 1945)
=> b² > a²
=> b > a (Do a và b là số tự nhiên)
Từ (1) và (2) => b² - a² = (n + 2004) - (n + 1945)
<=> (b + a)(b - a) = n + 2004 - n - 1945
<=> (b + a)(b - a) = 59
=> (b + a) và (b - a) là ước tự nhiên của 59
Ta có ước tự nhiên của 59 là các số: 1;59 (59 là số nguyên tố) Kết hợp với (b + a) > (b - a) (do a và b là số tự nhiên) ta có:
b + a = 59 (3) và b - a = 1 (4)
cộng vế với vế của (3) và (4) ta được:
(b + a) + (b - a) = 59 + 1
<=> b + a + b - a = 60
<=> 2b = 60
<=> b = 30
Thay b = 30 vào (2) ta được
n + 2004 = 30²
<=> n + 2004 = 900
<=> n = 900 - 2004
<=> n = -1104
Vậy với n = -1104 thì n+ 1945 và n + 2004 đều chính phương
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America
chả hầy cam hầy
chà hầy cam hầy