Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=\frac{2a+7}{5}< 0\)
Do \(5>0\)\(\Rightarrow\)\(2a+7< 0\)
\(\Leftrightarrow\)\(a< -\frac{7}{2}\)
Vậy với \(a< -\frac{7}{2}\)thì x âm
\(y=\frac{3b-8}{-5}< 0\)
Do \(-5< 0\) \(\Rightarrow\)\(3b-8>0\)
\(\Leftrightarrow\) \(b>\frac{8}{3}\)
Vậy với \(b>\frac{8}{3}\)thì y âm
a,Ta có:
\(x=\frac{a-5}{a}=1-\frac{5}{a}\)
Để x nguyên thì a phải thuộc ước nguyên của 5
\(\Rightarrow a\in U\left(5\right)=\left\{+-1;+-5\right\}\)
Ta có bảng sau
a | -1 | 1 | -5 | 5 |
x | 6 | -4 | 2 | 0 |
\(\Rightarrow a\in\left\{-4;0;2;6\right\}\)
Bài 1:
a) Để số hữa tỉ x là dương thì tử số và mẫu số của phân số \(\frac{2m-8}{-2017}\)cùng dấu
Mà -2017 là âm
=> 2m - 8 cũng là âm
=> 2m < 8
=> m < 4
Vậy với m < 4 thì x là số hữa tỉ dương
b) Để số hữa tỉ x là âm thì tử số và mẫu số của phân số \(\frac{2m-8}{-2017}\)khác dấu
Mà -2017 là âm
=> 2m - 8 là dương
=> 2m > 8
=> m > 4
Vậy với m > 4 thì x là số hữa tỉ âm
c) Để số hữa tỉ x không là âm không dương thì tử số của phân số \(\frac{2m-8}{-2017}\)là 0 ( vì số hữa tỉ không âm không dương là 0 )
=> 2m - 8 = 0
=> 2m = 8
=> m = 4
Vậy với m = 4 thì x không âm không dương
Bài 2:
Để số hữu tỉ \(c=\frac{2x-4}{x+3}\) là số nguyên thì: \(2x-4⋮x+3\)
\(\Rightarrow2x+6-4-6⋮x+3\)
\(\Rightarrow\left(2x+6\right)-10⋮x+3\)
\(\Rightarrow10⋮x+3\)( vì \(\left(2x+6\right)⋮x+3\))
\(\Rightarrow x+3\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
\(\Rightarrow x\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)
Vậy với \(x\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)thì số hữu tỉ C là số nguyên
1.
a) m > 2011
b) m<2011
c) m =2011
2.
a) \(m< \frac{-11}{20}\)
b)\(m>\frac{-11}{20}\)
3. -101 chia hết cho (a+7)
4. (3x-8) chia hết cho (x-5)
5. đề sai, N chứ ko phải n, tui ngu như con bòoooooooooooooooooooooo
5) Gọi \(d\inƯC\left(2m+9;14m+62\right)\)
\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}}\)
\(\Rightarrow\left(14m+63\right)-\left(14m+62\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\left\{-1;1\right\}\)
\(\RightarrowƯC\left(2m+9;14m+62\right)=\left\{-1;1\right\}\)
Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản (Vì tử và mẫu của p/s có ƯC là 1)
Ta có \(\frac{a+11}{a}=1+\frac{11}{a}\)
Để x \(\inℤ\Leftrightarrow\frac{11}{a}\inℤ\Leftrightarrow11⋮a\Leftrightarrow a\inƯ\left(11\right)\)
=> \(a\in\left\{1;-11;-1;11\right\}\)
Vây \(a\in\left\{1;-11;-1;11\right\}\) thì x nguyên
Để \(\frac{a+11}{a}\)là một số nguyên
Vậy \(\Rightarrow\)\((a+11)⋮a\)
Mà a\(⋮\)a
\(\Rightarrow\)11 \(⋮\)a
Để 11 chia hết cho a thì a phải là ước của 11 \(\Leftrightarrow\)Ư (11) = 1, 11 , -11 , -1
\(\Rightarrow a=1,11,-11,-1\)
\(x=\frac{b-4}{3}\left(b\inℤ\right)\)
a) Để x là số hữu tỉ dương => \(\frac{b-4}{3}>0\)
Nhân 3 vào từng vế
=> b - 4 > 0
=> b > 4 và b ∈ Z
b) Để x là số hữu tỉ âm => \(\frac{b-4}{3}< 0\)
Nhân 3 vào từng vế
=> b - 4 < 0
=> b < 4 và b ∈ Z
a) \(x=\frac{b-4}{3}>0\Leftrightarrow b>4,b\inℤ\)
b) \(x=\frac{b-4}{3}< 0\Leftrightarrow b< 4,b\inℤ\)
\(x=\frac{a-5}{-7}=\frac{-\left(a-5\right)}{7}=\frac{-a+5}{7}\)
\(\Rightarrow\)\(x\)là số âm khi \(-a\le-6\)\(\Rightarrow\left(a\inℕ\right)\)
Vậy: \(a\in N\)thoả mãn đề bài
Để x < 0
=> \(\frac{a-5}{-7}< 0\)
=> a - 5 > 0
=> a > 5
=> \(a\in\left\{6;7;8;9;...\right\}\)
Vậy \(a\in\left\{6;7;8;9;...\right\}\)thì x là số âm