Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Nếu a và b cùng dấu thì a/b dương => a/b > 0
+ Nếu a và b khác dấu thì a/b âm => a/b < 0
a)Với a>b=>a/b>1
Với a=b=>a/b=1
Với a<b=>a/b<1
b) Với a/b dương:
a/b<a+1/b+1(công thức có thể tự chứng minh bằng quy đồng)
Với a/b âm:
a/b>a+1/b+1.
Chúc em học tốt^^
Ta xét hiệu \(\frac{a}{b}-\frac{a+1}{b+1}=\frac{a\left(b+1\right)}{b\left(b+1\right)}-\frac{b\left(a+1\right)}{b\left(b+1\right)}=\frac{ab+a-ba-b}{b\left(b+1\right)}=\frac{a-b}{b\left(b+1\right)}\)
Do b(b+1) > 0 nên ta xét các trường hợp :
\(a< b\Rightarrow a-b< 0\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
\(a=b\Rightarrow a-b=0\Rightarrow\frac{a}{b}=\frac{a+1}{b+1}=1\)
\(a< b\Rightarrow a-b>0\Rightarrow\frac{a}{b}>\frac{a+1}{b+1}\)
Chúc em học tốt :))
Số nguyên a là số hữu tỉ vì ta có thể viết a = \(\frac{a}{1}\)
3. Với a, b ∈ Z, b # 0
- Khi a, b cùng dấu thì a/b > 0
- Khi a, b khác dấu thì a/b < 0
Kết luận: Số hữu tỉ a/b (a, b ∈ Z, b # 0) dương nếu a, b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0.
a, Để x là số nguyên
=> a - 5 chia hét cho a
Vì a chia hết cho a
=> -5 chia hết cho a
=> a \(\in\){1; -1; 5; -5}
\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)
\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+bn}{b\left(b+n\right)}\)
TH1: a = b
=> an = bn
=> ab+an = ab+bn
=> \(\frac{a}{b}=\frac{a+n}{b+n}\)
TH2: a > b
=> an > bn
=> ab + an > ab + bn
=> \(\frac{a}{b}>\frac{a+n}{b+n}\)
TH3: a < b
=> an < bn
=> ab + an < ab + bn
=> \(\frac{a}{b}
đề bài thiếu òi