Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề : ý b cm chia hết cho 55 chứ ko phải 35 nhé
a ) \(5^{2000}+5^{1998}=5^{1998}\left(5^2+1\right)=5^{1998}.26=5^{1998}.13.2⋮13\) (đpcm)
b ) \(7^{2016}+7^{2015}-7^{2014}=7^{2014}\left(7^2+7-1\right)=7^{2014}.55⋮55\) (đpcm)
Xét hiệu: (a3 + b3 + c3) ‐ (a + b + c) = a3 + b3 + c3 ‐ a ‐ b ‐ c = (a3‐ a) + (b3 ‐ b) + (c3 ‐ c)= a(a2‐ 1) + b(b2 ‐ 1)+ c(c2-1)= a(a ‐ 1)(a + 1)+ b(b ‐ 1)(b + 1) + c(c ‐ 1)(c + 1)
a(a ‐ 1)(a + 1) là tích 3 số tự nhiên liên tiếp nên a(a ‐ 1)(a + 1) chia hết cho 2 và 3
=> a(a ‐ 1)(a + 1) chia hết cho 6
Tương tự b(b ‐ 1)(b + 1) chia hết cho 6
c(c ‐1)(c + 1) chia hết cho 6
=>(a3 + b3 + c3 ) ‐ (a + b + c) chia hết cho 6
Mà 1998 chia hết cho 6 nên a + b + c chia hết cho 6 =>a3+ b3 + c3 chia hết cho 6
3. \(1998=a_1+a_2+a_3\) với \(a,b,c\in N\)
Xét hiệu \(\left(a_1^3+a_2^3+a_3^3\right)-\left(a_1+a_2+a_3\right)\)
\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+\left(a_3^3-a_3\right)\)
\(=a_1\left(a_1^2-1\right)+a_2\left(a_2^2-1\right)+a_3\left(a_3^2-1\right)\)
\(=\left(a_1-1\right).a_1.\left(a_1+1\right)+\left(a_2-1\right).a_2.\left(a_2+1\right)+\left(a_3-1\right).a_3.\left(a_3+1\right)\)
Dễ thấy mỗi số hạng là tích 3 số tự nhiên liên tiếp nên ắt tồn tại 1 số chia hết cho 2 và 1 số chia hết cho 3
=> Mỗi số hạng chia hết cho 6
=> Hiệu \(\left[\left(a_1^3+a_2^3+a_3^3\right)-\left(a_1+a_2+a_3\right)\right]⋮6\)
Hay \(\left(a_1^3+a_2^3+a_3^3\right)\) và \(\left(a_1+a_2+a_3\right)\) có cùng số dư khi chia cho 6
=> \(\left(a_1^3+a_2^3+a_3^3\right)\) và 1998 có cùng số dư khi chia cho 6
Nên \(\left(a_1^3+a_2^3+a_3^3\right)⋮6\)
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Có a2 - 1 = (a+1)(a-1)
Xét tích (a-1)a(a+1) chia hết cho 3
Do a là số ng tố > 3 nên a không chia hết cho 3
=> (a-1)(a+1) chia hết cho 3 (1)
Có a là số lẻ, đặt a = 2k + 1
Do vậy a2 - 1 = 4k(k+1)
Có k(k+1) luôn chia hết cho 2 => ak(k+1) chia hết cho 8 (2)
Từ (1) và (2) suy ra a2 - 1 chia hết cho 24 ( vì (3;8) =1 )
bài này thử là nhanh nhất (hi hi , mình đùa vui thôi chứ minh ko bít làm)