\(\frac{a}{\text{ x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

khó quá

27 tháng 3 2018

dễ mà cô nương

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)

\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)

ta có 

\(a=-5-b\)

suy ra

\(a^3-b^3=19\left(-5-2b\right)\) " xong "

2, trên mạng đầy

3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)

4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm

5. trên mạng đầy

6 , trên mang jđầy 

8 tháng 12 2018

a) a2(a+1)+2a(a+1) =(a+1)(a2+2a)=(a+1)(a+2)a

3 số tự nhiên liên tiếp chia hết cho 6 => đpcm

b) a(2a-3)-2a(a+1) = a[(2a-3)-2(a+1)] =a(2a-3-2a-2)

= -5a ⋮ 5 (đpcm)

c) \(x^2-x+1=x^2-2.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)Do \(\left(x-\dfrac{1}{4}\right)^2\ge0\forall x\)

=> \(\left(x-\dfrac{1}{4}\right)^2+\dfrac{3}{4}>0\) (đpcm)

d) \(-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)Do - (x-2)2 ≤ 0 với mọi x

=> -(x-2)2-1 <0 (đpcm)

7 tháng 12 2018

B1) Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{xy+yz+zx}{xyz}=0\)

\(\Rightarrow xy+yz+zx=0\)

Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

                                      \(=x^2+y^2+z^2+2.0\)

                                       \(=x^2+y^2+z^2\left(đpcm\right)\)

B2)  \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a;b\\\left(b-c\right)^2\ge0\forall b;c\\\left(c-a\right)^2\ge0\forall c;a\end{cases}\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c\left(đpcm\right)}\)

8 tháng 12 2018

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right).2=\left(ab+bc+ca\right).2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Ta có: \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{cases}}\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)

Vậy \(a^2+b^2+c^2=ab+bc+ca\)thì \(a=b=c\)

Đợt nọ em đăng bài toán này mà chưa ai giải được :(Không dùng phép tính, thay * thành chữ số thích hợp :\(89^6=4969\text{*}\text{*}290961\)Thôi thì em xin " đóng góp" lời giải :)))   Ta có \(89^6-1\)chia hết cho 89 - 1 = 88 chia hết cho 11, đồng thời nó chia hết cho \(89^3+1\)( Mọi người tự sử dụng hằng đẳng thức mà suy ra ) lại chia hết cho 89 + 1 = 90 chia hết cho...
Đọc tiếp

Đợt nọ em đăng bài toán này mà chưa ai giải được :(

Không dùng phép tính, thay * thành chữ số thích hợp :

\(89^6=4969\text{*}\text{*}290961\)

Thôi thì em xin " đóng góp" lời giải :)))
   Ta có \(89^6-1\)chia hết cho 89 - 1 = 88 chia hết cho 11, đồng thời nó chia hết cho \(89^3+1\)( Mọi người tự sử dụng hằng đẳng thức mà suy ra ) lại chia hết cho 89 + 1 = 90 chia hết cho 99

Đặt \(89^6-1=A\)

\(A=89^6-1=4969xy290961-1=4969xy290960\)chia hết cho 11 và 9

Tổng các chữ số hàng lẻ từ phải sang trái của A bằng 36 + y ( mọi người tự tính ra ); tổng các chữ số hàng chẵn là 18 + x

A chia hết cho 9 nên ( 36 + y ) + ( 18 + x )  = 54 + x + y chia hết cho 9, hay x + y chia hết cho 9

\(0\le x+y\le18\Leftrightarrow x+y\in\left\{0;9;18\right\}\)

Mà A chia hết cho 11 nên \(\left(36+y\right)-\left(18+x\right)\)chia hết cho 11, từ đó y - x + 18 chia hết cho 11, nên y - x có thể là -7 hoặc 4 ( dễ dàng tính tương tự )

Chú ý x + y và x - y cùng tính chẵn lẻ nên ta thử chọn như sau:

x + y = 0 thì x = y = 0, không thỏa mãn y - x trong chứng minh trên.

x + y = 18 thì hiệu chúng phải chẵn, tức y - x = 4; thì y = ( 18 + 4 ) : 2 = 11 > 10, không thỏa mãn là chữ số

x+ y = 9 thì y - x = 7, tính được x = 8 ; y = 1

\(\Rightarrow89^6=A+1=496981290961\)

Vậy ta điền : ..........81...........

 

 

 

1
8 tháng 12 2016

Ta có 896−1chia hết cho 89 - 1 = 88 chia hết cho 11, đồng thời nó chia hết cho 893+1( Mọi người tự sử dụng hằng đẳng thức mà suy ra ) lại chia hết cho 89 + 1 = 90 chia hết cho 99

Đặt 896−1=A

A=896−1=4969xy290961−1=4969xy290960chia hết cho 11 và 9

Tổng các chữ số hàng lẻ từ phải sang trái của A bằng 36 + y ( mọi người tự tính ra ); tổng các chữ số hàng chẵn là 18 + x

A chia hết cho 9 nên ( 36 + y ) + ( 18 + x )  = 54 + x + y chia hết cho 9, hay x + y chia hết cho 9

0≤x+y≤18⇔x+y∈{0;9;18}

Mà A chia hết cho 11 nên (36+y)−(18+x)chia hết cho 11, từ đó y - x + 18 chia hết cho 11, nên y - x có thể là -7 hoặc 4 ( dễ dàng tính tương tự )

Chú ý x + y và x - y cùng tính chẵn lẻ nên ta thử chọn như sau:

x + y = 0 thì x = y = 0, không thỏa mãn y - x trong chứng minh trên.

x + y = 18 thì hiệu chúng phải chẵn, tức y - x = 4; thì y = ( 18 + 4 ) : 2 = 11 > 10, không thỏa mãn là chữ số

x+ y = 9 thì y - x = 7, tính được x = 8 ; y = 1

⇒896=A+1=496981290961

Vậy ta điền : ..........81...........

14 tháng 3 2017

a, A=(x+y)(x+2y)(x+3y)(x+4y) + y^4
=[(x+y)(x+4y)][(x+2y)(x+3y)]+y^4
=(x^2+5xy+4y^2)(x^2+5xy+6y^2) +y^4
=[(x^2+5xy+5y^2)-y^2][(x^2+5xy+5y^2) +y^2]+y^4
=(x^2+5xy+5y^2)^2 -y^4+y^4
=[(x^2+5xy+5y^2)^2 là 1 số chính phương (vì x,ythuộc Z)

22 tháng 5 2016

Câu 2 nè:

Ta có:2006 = 2.17.59

Để q chia hết cho 2006 thì n(n+1)...(n+9) chia hết cho 2006

Với n<50 thì n, (n+1), ... (n+9) < 59 nên ko thoả mãn.

Với n=50: thì n+1 = 51 chia hết cho 17; n+9=59 chia hết cho 59

suy ra n(n+1)...(n+9) chia hết cho 2006

* Ta sẽ chứng minh n=50 là số tự nhiên nhỏ nhất thoả mãn.

- Đặt S = \(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{59}\)

\(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{58}=\frac{A}{B}\)(trong đó B ko chia hết 59)

\(\Rightarrow S=\frac{A}{B}+\frac{1}{59}=\frac{\left(59A+B\right)}{59B}=\frac{p}{q}\)

hay (59A + B)q = 59Bp hay Bq = 59(Bp - Aq)

Do B ko chia hết 59 suy ra q chia hết 59.

- Đặt \(\frac{1}{50}+\frac{1}{52}+...+\frac{1}{58}=\frac{C}{D}\) ta cũng có D ko chia hết cho 17

Chứng minh tương tự suy ra q chia hết cho 59, 17, 2

=>đpcm

22 tháng 5 2016

nếu đề có thêm điều kiện n nhỏ nhất thì làm như vậy còn ko thì chỉ chép đến chỗ dấu       "'*"  thui

18 tháng 5 2018

\(-x^2+4x-5\)

\(=\left(-x+4x-4\right)-1\)

\(=-\left(x-2\right)^2-1\le-1\)

Vì -1<0

Nên \(-x^2+4x-5< 0\) với mọi x

18 tháng 5 2018

a ,\(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\)

\(\Leftrightarrow a\left(a+1\right)\left(a+2\right)⋮6\)

Vì a(a+1) là 2 số nguyên liên tiếp nên chia hết cho 2

Vì a (a+1)(a+2) là 3 số nguyên liên tiêp nên chia hết cho 3

Mà 2 và 3 là 2 số nguyên tố cùng nhau

\(\Rightarrow a\left(a+1\right)\left(a+2\right)⋮6\) hay \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\) (đpcm)

b,\(a\left(2a-3\right)-2a\left(a+1\right)⋮5\)

\(\Leftrightarrow2a^2-3a-2a^2-2a⋮5\)

\(\Leftrightarrow-5a⋮5\) (đúng)

Vậy \(a\left(2a-3\right)-2a\left(a+1\right)⋮5\)

c,\(x^2+2x+2>0\forall x\)

Ta có \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)

\(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)

Vậy \(x^2+2x+2>0\forall x\)

d,\(x^2-x+1>0\forall x\)

Ta có: \(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)

Vậy \(x^2-x+1>0\forall x\)

e,\(-x^2+4x-5< 0\forall x\)

Ta có \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)

\(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2-1\le-1< 0\forall x\)

Vậy \(-x^2+4x-5< 0\forall x\)

18 tháng 8 2018

a) \(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\) (ĐKXĐ: \(x\ne\pm1\) )

        \(=\left(\frac{x+1+2\left(1-x\right)-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

         \(=\left(\frac{x+1+2-2x-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

           \(=\left(\frac{-2}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

            \(=\frac{2}{x^2-1}.\frac{x^2-1}{1-2x}=\frac{2}{1-2x}\)

b) Để x nhận giá trị nguyên <=> 2 chia hết cho 1 - 2x

                                         <=> 1-2x thuộc Ư(2) = {1;2;-1;-2}

Nếu 1-2x = 1 thì 2x = 0 => x= 0

Nếu 1-2x = 2 thì 2x = -1 => x = -1/2

Nếu 1-2x = -1 thì 2x = 2 => x =1

Nếu 1-2x = -2 thì 2x = 3 => x = 3/2

Vậy ....