Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Số \(A\) có dạng (vì các chữ số là \(1 , 0 , 1 , 0 , \ldots , 1\) với \(n\) chữ số \(1\))
\(A=\sum_{k=0}^{n-1}10^{2k}=1+10^2+10^4+\ldots+10^{2\left(\right.n-1\left.\right)}=\frac{100^{\textrm{ } n} - 1}{100 - 1}=\frac{100^{\textrm{ } n} - 1}{99}.\)(a) \(A\) chia hết cho \(99\).
Ta cần \(\frac{100^{n} - 1}{99} \equiv 0 \left(\right. m o d 99 \left.\right)\), tức là
Viết \(100 = 1 + 99\). Theo khai triển nhị thức, modulo \(99^{2}\) ta có
\(100^{n} = \left(\right. 1 + 99 \left.\right)^{n} \equiv 1 + n \cdot 99 \left(\right. m o d 99^{2} \left.\right) .\)Vậy \(100^{n} \equiv 1 \left(\right. m o d 99^{2} \left.\right)\) khi và chỉ khi \(99 n \equiv 0 \left(\right. m o d 99^{2} \left.\right)\), tức \(n \equiv 0 \left(\right. m o d 99 \left.\right)\).
=> Những \(n\) thỏa là mọi bội của \(99\) (ít nhất \(n = 99\) là nhỏ nhất dương).
(b) \(A\) chia hết cho \(9999\).
Phân tích \(9999 = 3^{2} \cdot 11 \cdot 101 = 9 \cdot 11 \cdot 101\). Vì các thừa số này đôi một nguyên tố khác nhau, đủ để yêu cầu \(A \equiv 0\) theo từng modulo.
- Modulo \(9\): \(100 \equiv 1 \left(\right. m o d 9 \left.\right)\) nên \(A \equiv n \left(\right. m o d 9 \left.\right)\). Do đó cần \(n \equiv 0 \left(\right. m o d 9 \left.\right)\).
- Modulo \(11\): \(100 \equiv 1 \left(\right. m o d 11 \left.\right)\) nên \(A \equiv n \left(\right. m o d 11 \left.\right)\). Do đó cần \(n \equiv 0 \left(\right. m o d 11 \left.\right)\).
- Modulo \(101\): \(100 \equiv - 1 \left(\right. m o d 101 \left.\right)\). Do đó
\(A\equiv k=0∑n-1(-1)k={0(mod101),1(mod101),nchẵn,nlẻ.}\)
Nên cần \(n\) chẵn.
Kết hợp: \(n\) phải chia hết cho \(9\), \(11\) và đồng thời là chẵn. Do đó \(n\) phải chia hết cho \(l c m \left(\right. 9 , 11 , 2 \left.\right) = 198\).
=> Những \(n\) thỏa là mọi bội của \(198\) (ít nhất \(n = 198\) là nhỏ nhất dương).


Giả sử A là số nguyên tố.
Đầu tiên ta có nhận xét: \(\left(a+1\right)\left(a-1\right)=a^2-a+a-1=a^2-1.\)
Theo giả thiết A sẽ có 2n+1 chữ số, các chữ số là 0,1 xen kẽ. Suy ra
\(A=10^{2n}+10^{2n-2}+\cdots+1\to10^2A=10^{2n+2}+10^{2n}+\cdots+10^2.\)
Vì vậy \(99A=10^2A-A=10^{2\left(n+1\right)}-1\to A=\frac{10^{2\left(n+1\right)-1}}{99}=\frac{\left(10^{n+1}-1\right)\left(10^{n+1}+1\right)}{99}.\)
Nếu \(n+1=2k\) là số chẵn thì \(10^{n+1}-1=10^{2k}-1=9999\ldots99\) có \(2k\) số \(9\) nên chia hết cho \(99\). Vì A là số nguyên tố và \(10^{n+1}+1>1\) nên \(\frac{10^{n+1}-1}{99}=1\to n+1=2\to n=1\to A=101.\)
Nếu \(n+1=2k+1\) là số lẻ thì \(10^{n+1}+1=100\ldots01\) có 2k+2 chữ số, nên chia hết cho 11 theo dấu hiệu nhận biết. Mà \(\frac{10^{n+1}-1}{9}\) là số nguyên dương. Thành thử \(\frac{10^{n+1}-1}{9}=1\) hoặc \(\frac{10^{n+1}+1}{11}=1\). Suy ra \(n=0\to A=1\) (loại).
Đáp số \(A=101.\)

(3+32+33)+(34+35+36)+...+(32005+32006+32007)
=3(1+3+32)34(1+3+32)+...+32005(1+3+32)
=3.13+3^4.13+...+3^2005.13
=13(3+34+...+32005)
tick mk nha