Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Số \(A\) có dạng (vì các chữ số là \(1 , 0 , 1 , 0 , \ldots , 1\) với \(n\) chữ số \(1\))
\(A=\sum_{k=0}^{n-1}10^{2k}=1+10^2+10^4+\ldots+10^{2\left(\right.n-1\left.\right)}=\frac{100^{\textrm{ } n} - 1}{100 - 1}=\frac{100^{\textrm{ } n} - 1}{99}.\)(a) \(A\) chia hết cho \(99\).
Ta cần \(\frac{100^{n} - 1}{99} \equiv 0 \left(\right. m o d 99 \left.\right)\), tức là
Viết \(100 = 1 + 99\). Theo khai triển nhị thức, modulo \(99^{2}\) ta có
\(100^{n} = \left(\right. 1 + 99 \left.\right)^{n} \equiv 1 + n \cdot 99 \left(\right. m o d 99^{2} \left.\right) .\)Vậy \(100^{n} \equiv 1 \left(\right. m o d 99^{2} \left.\right)\) khi và chỉ khi \(99 n \equiv 0 \left(\right. m o d 99^{2} \left.\right)\), tức \(n \equiv 0 \left(\right. m o d 99 \left.\right)\).
=> Những \(n\) thỏa là mọi bội của \(99\) (ít nhất \(n = 99\) là nhỏ nhất dương).
(b) \(A\) chia hết cho \(9999\).
Phân tích \(9999 = 3^{2} \cdot 11 \cdot 101 = 9 \cdot 11 \cdot 101\). Vì các thừa số này đôi một nguyên tố khác nhau, đủ để yêu cầu \(A \equiv 0\) theo từng modulo.
- Modulo \(9\): \(100 \equiv 1 \left(\right. m o d 9 \left.\right)\) nên \(A \equiv n \left(\right. m o d 9 \left.\right)\). Do đó cần \(n \equiv 0 \left(\right. m o d 9 \left.\right)\).
- Modulo \(11\): \(100 \equiv 1 \left(\right. m o d 11 \left.\right)\) nên \(A \equiv n \left(\right. m o d 11 \left.\right)\). Do đó cần \(n \equiv 0 \left(\right. m o d 11 \left.\right)\).
- Modulo \(101\): \(100 \equiv - 1 \left(\right. m o d 101 \left.\right)\). Do đó
\(A\equiv k=0∑n-1(-1)k={0(mod101),1(mod101),nchẵn,nlẻ.}\)
Nên cần \(n\) chẵn.
Kết hợp: \(n\) phải chia hết cho \(9\), \(11\) và đồng thời là chẵn. Do đó \(n\) phải chia hết cho \(l c m \left(\right. 9 , 11 , 2 \left.\right) = 198\).
=> Những \(n\) thỏa là mọi bội của \(198\) (ít nhất \(n = 198\) là nhỏ nhất dương).

1.
Gọi P=abcdeg
abc chia hết cho7
deg chia hết cho 7
Suy ra abc-deg chia hết cho 7
Và abcdeg chia hết cho 7( vì abc và deg đều chia hết cho 7 và nhân lên thì cũng chia hết cho 7)
2.
5+5²+5³+5⁴+........+5⁹⁹+5¹⁰⁰
=(5+5²)+(5³+5⁴)+......+(5⁹⁹+5¹⁰⁰)
=(5+5²)+5²×(5+5²)+.....+5⁹⁸×(5+5²)
=1×30+5²×30+........+5⁹⁸×30
=30×(1+5²+......+5⁹⁸) chia hết cho 6 vì 30 chia hết cho 6.
Nhấn cho mk r mk giải tiếp cho

(3+32+33)+(34+35+36)+...+(32005+32006+32007)
=3(1+3+32)34(1+3+32)+...+32005(1+3+32)
=3.13+3^4.13+...+3^2005.13
=13(3+34+...+32005)
tick mk nha

Bài 1 :
a)
Ta có: 87ab ⋮ 9 ⇔ (8 + 7 + a + b) ⁝⋮ 9 ⇔ (15 + a + b) ⋮ 9
Suy ra: (a + b) ∈ {3; 12}
Vì a – b = 4 nên a + b > 3. Suy ra a + b = 12
Thay a = 4 + b vào a + b = 12, ta có:
b + (4 + b) = 12 ⇔ 2b = 12 – 4
⇔ 2b = 8 ⇔ b = 4
a = 4 + b = 4 + 4 = 8
Vậy ta có số: 8784.
b)
⇒ (7+a+5+b+1) chia hết cho 3
⇔ (13+a+b) chia hết cho 3
+ Vì a, b là chữ số, mà a-b=4
⇒ a,b ∈ (9;5) (8;4) (7;3) (6;2) (5;1) (4;0).
Thay vào biểu thức 7a5b1, ta được :
ĐA 1: a=9; b=5.
ĐA 2: a=6; b=2.
Bài 2 :