Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4= 30+31(làm ra nháp)
S= 3+32+33+...+3100
S= (3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^99+3^100)
S=(3x1+3x3)+(3^3x1+3^3x3)+(3^5x1+3^5x3)+...+(3^99x1+3^99x3)
S=3x(1+3)+3^3x(1+3)+3^5x(1+4)+...+3^99x(1+3)
S=3x4+3^3x4+3^5x4+...+3^99x4
S=4x(3+3^3+3^5+...+3^99)
=> S chia hết cho 4.
Đặt Tên Chi
Tìm kiếm
Báo cáo
Đánh dấu
24 tháng 12 2015 lúc 20:28
Cho S=3+32+33+........+3100
a, Chứng minh rằng S chia hết cho 4.
b, Chứng minh rằng 2S+3 là 1 lũy thừa của 3
Toán lớp 6
Ta có S = 3+32+33+....+3100
= 3.(1+3)+32.(1+3)+.....+399.(1+3)
=3.4+32.4+......+399.4
Vì 3.4=12 => 32.4 chia hết cho 4
.............
399.4 chia hết cho 4
=> S chia het cho 4
a,2n+3chia het cho n+1
n+1 chia het cho n+1
=>[2n+3]-2[n+1]=2n-3-2n-1=2chia het cho n+1
=>n+1 bé hơn hoặc bằng 1
=>n+1 thuộc ước cuả 2
=>n+1 thuoc 1;2
nên n=0;1
Vậy n=0;1
S = 3 + 32 + 33 + ... + 3100
=> 3S = 32 + 33 + ... + 3100+3101
=> 2S = 3101 - 3
=> 2S + 3 = 3101 + 3 - 3 = 3101
=> 2S + 3 là 1 lũy thừa của 3 ( ĐPCM)
Cho Mình Tích Nha
S = 3 + 32 + 33 + ... + 3100
=> 3S = 32 + 33 + ... + 3100+3101
=> 2S = 3101 - 3
=> 2S + 3 = 3101 + 3 - 3 = 3101
=> 2S + 3 là 1 lũy thừa của 3 ( ĐPCM)
\(S=\frac{3^{64}-3}{2}\)
\(\Rightarrow2S+3=2.\frac{3^{64}-3}{2}+3=3^{64}-3+3=3^{64}\)
Do đó 2S + 3 là một lũy thừa
S=3+32+33+...+363
=>3S=32+33+34+...+364
=>3S-S=(32+33+34+...+64)-(3+32+33+...+363)
=>2S=364-3
=>2S+3=364-3+3=364
=>đpcm
Câu e đó nấy bạn, mik ghi thiếu đề, đáng lẽ là Chứng tỏ 2S +1 là lũy thừa của 3, sửa lại giúm mik nhoa
\(S=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3S=3^2+3^3+...+3^{101}\)
\(\Rightarrow3S-S=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow3S-S=3^{101}-3\)
\(\Rightarrow2S=3^{101}-3\)
\(\Rightarrow2S+3=3^{101}-3+3=3^{101}\)
Vậy \(2S+3\) là luỹ thừa của 3