\(5+5^2+5^3+...+5^{2012}\)

CMR , S\(⋮\)65 và kh...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

\(S=5+5^2+5^3+5^4+...+5^{2012}\)

\(S=\left(5+5^3\right)+\left(5^2+5^4\right)+...+\left(5^{2010}+5^{2012}\right)\)

\(S=\left(5+5^3\right)+5\left(5+5^3\right)+...+5^{2009}\left(5+5^3\right)\)

\(S=130+5\cdot130+...+5^{2009}\cdot130\)

\(S=65\cdot2+5\cdot65\cdot2+...+5^{2009}\cdot65\cdot2\)

\(S=65\left(2+5\cdot2+...+5^{2009}\cdot2\right)⋮65\)   (đpcm)

=))

16 tháng 10 2017

biểu thứ là gì?

10 tháng 1 2018

M = 5 + 52 + 53 + ... + 52012.

    = ( 5+1 ).52 + ( 5+1 ). 53 +...+( 5+1 ). 5 80

    =6. 52 + 6. 53 + ...+ 6. 5 80

    =\(6\).52.53x...x5 80

Vậy M chia hết cho 6.

23 tháng 4 2016

Cung minh chia het cho 126

S=(5+5^2+5^3+5^4+5^5+5^6)+(5^7+5^8+5^9+5^10+5^11+5^12)+...+(5^1999+5^2000+5^2001+2002+2003+2004)

S=(5+5^3)+(5^2+5^5)+(5^3+5^6)+...+(5^2000+5^2003)+(5^2001+5^2004)

S=5.(1+125)+5^2.(1+125)+5^3.(1+125)+...+5^2000.(1+125)+5^2001.(1+125)

S=5.126+5^2.126+5^3.126+...+5^2000.126+5^2001.126

S=126.(5+5^2+5^3+...+5^2000+5^2001) chia het cho 126

Chung minh chia het cho 65 tuong tu nhom 4 so roi dat thua so chung.

23 tháng 4 2016

 Ta có: S = 5 + 52 + 53 + ... + 52004

           S = ( 5 + 53) + ( 52+ 54) +...+ ( 52002 + 52004)

           S = ( 5 + 53) + 5 ( 5 + 53) + ...+ 52001 ( 5 + 53

            S = 2 .65 + 5.2.65 + ...+ 52001.2.65

=> S chia hết cho 65

Chắc là chia hết cho 156 chứ 126 mình không làm được

26 tháng 7 2016

/vip/minan_3712

/vip/ngoclinh

/vip/muonduochoc

/vip/khanhhay2002@gmail.com

mấy pạn ơi giúp mk với

26 tháng 7 2016

gì vậy bn???????????????????????????/hiuhiu

26 tháng 7 2016

\(S=5+5^2+5^3+..+5^{2008}\)

\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+...\left(5^{2003}+5^{2004}+5^{2005}+5^{2006}+5^{2007}+5^{2008}\right)\)

\(S=5.\left(1+5+25+125+625+3125\right)+...+5^{2003}.\left(1+5+25+125+625+3125\right)\)

\(S=5.3906+...+5^{2003}.3906\)

\(S=3906.\left(5+...+5^{2003}\right)\)chia hết cho 126

=> S chia hết cho 3906 

Ủng hộ mk nha !!! ^_^

30 tháng 7 2016

\(S=5+5^2+5^3+..+5^{2008}\)

\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+...\left(5^{2003}+5^{2004}+5^{2005}+5^{2006}+5^{2007}+5^{2008}\right)\)

\(S=5.\left(1+5+25+125+625+3125\right)+...+5^{2003}.\left(1+5+25+125+625+3125\right)\)

\(S=5.3906+...+5^{2003}.3906\)

\(S=3906.\left(5+...+5^{2003}\right)\)chia hết cho 126

=> S chia hết cho 3906 

6 tháng 3 2018

https://olm.vn/hoi-dap/question/357592.html   dựa vao mà làm

12 tháng 8 2016

Ta có :

\(S=5+5^2+5^3+...+5^{2016}+5^{2017}\)

\(=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2013}+5^{2014}+5^{2015}+5^{2016}\right)+5^{2017}\)

\(=\left(5+5^2+5^3+5^4\right)+5^4\left(5+5^2+5^3+5^4\right)+...+5^{2012}\left(5+5^2+5^3+5^4\right)+5^{2017}\)

\(=\left(1+5^4+5^8+...+5^{2012}\right)\left(5+5^2+5^3+5^4\right)+5^{2017}\)

\(=\left(1+5^4+5^8+...+5^{2012}\right).65.12+5^{2017}\)

Ta có :

\(5^4\text{≡}1\left(mod13\right)\)

\(\Rightarrow\left(5^4\right)^{504}\text{≡}1^{504}\left(mod13\right)\)

\(\Rightarrow5^{2016}\text{≡}\left(mod13\right)\)

\(\Rightarrow5^{2017}\text{≡}5\left(mod13\right)\)

Lại có :

\(\left(1+5^4+5^8+...+5^{2012}\right).65.12\text{ }\text{⋮}65\)

\(5^{2017}\)không chia hết cho 65

\(\Rightarrow\left(1+5^4+5^8+...+5^{2012}\right).65.12+5^{2017}\)không chia hết cho 65

\(\Rightarrow S\)không chia hết cho 65

Vậy \(S\)không chia hết cho 65

12 tháng 8 2016

\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2015}+5^{2016}\right)+5^{2017}\)

\(S=130+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+...+5^{2014}\left(5+5^2\right)+5^{2017}\)

\(S=130+5^2.130+5^4.130+...+5^{2014}.130+5^{2017}\)

\(S=130\left(1+5^2+5^4+...+5^{2014}\right)+5^{2017}\)

Vì \(S=130\left(1+5^2+5^4+...+5^{2014}\right)\)chia hết cho 65 nhưng \(5^{2017}\)không chia hết cho 65

=> \(S=130\left(1+5^2+5^4+...+5^{2014}\right)+5^{2017}\)không chia hết cho 65

Vậy \(5+5^2+5^3+5^4+5^5+...+5^{2017}\)Không chia hết cho 65