Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta cộng các số mũ : 2+3+4+5+6+7 = 27 ( 27 chia hết cho 3 nên S chia hết cho 3 )
S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
S = ( 1 + 2 ) + ( 22 + 23 ) + ( 24 + 25 ) + ( 26 + 27 )
S = 20 . ( 1 + 2 ) + 22 . ( 1 + 2 ) + 24 . ( 1 + 2 ) + 26 . ( 1 + 2 )
S = 20 . 3 + 22 . 3 + 24 . 3 + 26 . 3
S = 3 . ( 20 + 22 + 24 + 26 ) chia hết cho 3
S=(5+52)+(53+54)+....+(52017+52018)
= 30+52(5+52)+....+52016(5+52)
=30+30.52+....+30.52016
vì từng số hạng của S chia hết cho 30 nên S chia hết cho 30
S=1+2+22+23+.....+27
<=> S=(1+2)+(22+23)+....+(26+27)
<=> S=3+22(1+2)+....+26(1+2)
<=> S=3+22.3+.....+26.3
<=> S=3(1+22+....+26)
=> S chia hết cho 3 (đpcm)
S = 1+2+22+23+24+25+26+27
2S = 2. (1+2+22+23+24+25+26+27)
2S = 2+ 22+23+24+25+ 26+27+28
2S-S = ( 2+22+23+24+25+26+27+28) - ( 1+2+22+23+24+25+26+27)
S = 28 - 1
S = 256 -1 = 255
Mà 255 chia hết cho 3 ( 255:3 = 85) suy ra S chia hết cho 3
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^7+2^8\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^7.\left(1+2\right)\)
\(=3.\left(2+2^3+...+2^7\right)=3.2.\left(1+2^2+2^3+...+2^6\right)\)
\(=6.\left(1+2^2+2^3+...+2^6\right)⋮-6\)
a) S=(2+22)+22(2+22)+24(2+22)+.....+298(2+22)
S=(2+22)(1+22+24+....+298)
s=6(1+22+24+....+298)
Vi 6 chia het cho 3.Suyra S chia het cho 3
Moi cac ban xem tiep phan sau vao ngay mai
a. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2)+2^3.(1+2)+2^5.(1+2)+....+2^99(1+2)
=2.3+2^3.3+2^5.3+...+2^99.3
=3.(2+2^2+2^5+...+2^99)
=> 3 chia hết cho 3
b. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2+4+8)+2^5.(1+2+4+8)+2^9(1+2+4+8)+...+2^96.(1+2+4+8)
=2.15+2^5.15+2^9.15+...+2^96.15
=> S chia hết cho 15
=(2+2^2)+(2^3+2^4)+...........+(2^9+2^10)
=2x(1+2)+2^3x(1+2)+...........+2^9x(1+2)
=2x3+2^3x3+............+2^9x3
=3x(2+2^3+.....+2^9)chia hết cho 3
vậy S chia hết cho 3
=(2+2^2)+(2^3+2^4)+...........+(2^9+2^10)
=2x(1+2)+2^3x(1+2)+...........+2^9x(1+2)
=2x3+2^3x3+............+2^9x3
=3x(2+2^3+.....+2^9)chia hết cho 3
vậy S chia hết cho 3
2S=2^2+2^3+...+2^2019
=> 2S-S=2^2019-2=> S=2^2019-2
Có 2^2019:3 dư 2 do 2^2019=(2^2)^1009.2=4^1009.2
4 đồng dư 1 mod 3 => 4^1009.2 đồng dư 2 mod 3; 2 đồng dư 2 mod 3
=> 2^2019 -2 chia hết cho 3
=> S chia hết cho 3.
\(S=2+2^2+2^3+2^4+...+\)\(2^{2018}\)
=>\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+...\)\(+\left(2^{2017}+2^{2018}\right)\)
=>\(S=6+2^2\left(2+2^2\right)+...+\)\(2^{2016}\left(2+2^2\right)\)
=>\(S=6+6.2^2+...+2^{2016}.6\)
=>\(S=6\left(1+2^2+...+2^{2016}\right)⋮3\) ( vì \(6⋮3\))