K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

Anh em nào chả lời hộ mình nhé 

4 tháng 10 2018

S = 1 +2 + 2^2 + ..... + 2^99

2.S = 2 . (1+2+2^2+....+2^99)

2 .S = 2 + 2^2 + 2^3 + ...... 2^100

2.S - S = ( 2+2^2 + 2^3 + ...+ 2^100) - (1+2+2^2+...+2^99)

S = 2^100 - 1

ko ra k quả cụ thể đc nhek

Ta có:

M=21+22+23+24+....+220⇔2.M=2.(21+22+23+24+....+220)⇔2M=2.21+2.22+2.23+2.24+....+2.220⇔2M=22+23+24+25+......+221⇒2M−M=(22+23+24+25+......+221)−(21+22+23+24+....+220)⇔M=221−21⇔M=2.220−2⇔M=2.(24)5−2⇔M=2.165−2M=21+22+23+24+....+220⇔2.M=2.(21+22+23+24+....+220)⇔2M=2.21+2.22+2.23+2.24+....+2.220⇔2M=22+23+24+25+......+221⇒2M−M=(22+23+24+25+......+221)−(21+22+23+24+....+220)⇔M=221−21⇔M=2.220−2⇔M=2.(24)5−2⇔M=2.165−2

6x6x luôn có chữ số tận cùng là 6 nên 165165 có chữ số tận cùng là 6.

Do đó, 2.1652.165 có chữ số tận cùng là 2

Suy ra 2.165−22.165−2 có chữ số tận cùng là 0

Hay 2.165−22.165−2 chia hết cho 10.

Vậy M chia hết cho 10.

dựa vô đó nha

nếu bn cần gấp thì dựa dô đó chứ mình còn ôn bài nên ko thể giải giúp bn. Thông cảm nha

9 tháng 8 2017

S=1+7+7^2+7^3+...+7^100+7^101

   =(1+7)+7^2(1+7)+...+7^100(1+7)

   =8+7^2.8+...+7^100.8

   =8.(1+7^2+...+7^100) chia hết cho 8 

Vậy S chia hết cho 8

     

9 tháng 8 2017

a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5

   S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)

   S=20+4^2*20+...+4^98

   S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)

 b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6

    S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

    S=6+2^2.*6+...+2^2008

    S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6

  

    

`#3107`

`S = 1 + 2 + 2^2 + 2^3 + ... +`\(2^{99}+2^{100}\)

\(2S=2+2^2+2^3+2^4+...+2^{100}+2^{101}\)

`2S - S`

\(=\left(2+2^2+2^3+2^4+...+2^{100}+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{99}+2^{100}\right)\)

\(S=2+2^2+2^3+2^4+...+2^{100}+2^{101}-1-2-2^2-2^3...-2^{99}-2^{100}\)

\(S=2^{101}-1\)

Vậy, \(S=2^{101}-1.\)

21 tháng 9 2023

     S   = 1 + 2 + 22 + 23 +...+ 299 + 2100

   2S   =        2 + 22 + 23 +...+ 299 + 2100 + 2101

2S - S = 2101 - 1

        S = 2101 -1

 

5 tháng 3 2020

1) Từ 1 đến 100 có tất cả 100 số số hạng

=> 1+2+3+....+99+100=\(\frac{\left(100+1\right)\cdot100}{2}=5050\)

=> A=5050

2) Từ 1 đến 99 có tất cả: (99-1) : 2 +1=50 số hạng

=> 1+3+5+7+....+97+99=\(\frac{\left(99+1\right)\cdot50}{2}=2500\)

=> B=250

3) làm tương tự

4) S=\(1+2+2^2+2^3+...+2^9\)

\(2S=2+2^2+2^3+2^4+....+2^{10}\)

\(2S-S=2^{10}-1\)

\(\Rightarrow S=2^{10}-1\)

5) làm tương tự

5 tháng 3 2020

A=1+2+3+...+99+100

Số số hạng của dãyA là:

(100-1):1+1=100(số hạng)

Tổng của dãy A là :

(100+1).100:2=5050

B=1+3+5+...+97+99

Số số hạng của dãy B là:

 (99-1):2+1=50 (số hạng)

Tổng của dãy B là:

  (99+1).50:2=250

C=2+4+6+...+98+100

Số số hạng của dãy C  là:

  (100-2):2+1=50(số hạng)

Tổng của dãy C là: 

  (100+2).50:2=2550

      S=1+2+22+23+...+29

    2S=    2+22+23+...+29+210

2S-S=1-210

      S=1-210

M=1+3+32+33+...+39

3M=3+32+33+...+39+310

3M-M=1-310

2M=1-310

M=(1-310):2

22 tháng 8 2019

\(S=1+3+\cdot\cdot+3^{99}\)

\(\Rightarrow3S=3+3^2+\cdot\cdot\cdot+3^{100}\)

\(\Rightarrow3S-S=\left(3+\cdot\cdot\cdot+3^{100}\right)-\left(1+3+\cdot\cdot\cdot+3^{99}\right)\)

\(\Rightarrow2S=3^{100}-1\)

\(\Rightarrow2S+1=3^{100}\)

Chứng tỏ 2S +1 là luỹ thừa của 3

25+1=26 làm sao là lũy thừa của 3 đc!

Chắn đề sai rùi bn ạ,bn nhìn lại đề xem!

#Hok_tốt

3 tháng 1 2018

\(S=6+6^2+6^3+.......+6^{100}\)

\(=\left(6+6^2\right)+\left(6^3+6^4\right)+......+\left(6^{99}+6^{100}\right)\)

\(=6\left(6+6^2\right)+6^3\left(6+6^2\right)+.....+6^{99}\left(6+6^2\right)\)

\(=6.42+6^3.42+.........+6^{99}.42\)

\(=42\left(6+6^3+.........+6^{99}\right)⋮42\left(đpcm\right)\)