K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2016

S=1+3+3^2+3^3+...+3^99

3S=3+3^2+3^3+3^4+...+3^99+3^100

3S-S=3^100-1

\(\Rightarrow\)2S=3^100-1

\(\Rightarrow\)2S+1=3^100-1+1=3^100.Vì 3^100 là lũy thừa của 3 mà 3^100=2S+1

Vậy 2S+1 là lũy thừa của 3

K ĐÚNG CHO MÌNH NHA.

4 tháng 12 2017

S =1+3+32+33+…+399

3S =3+32+33+…+3100

3S-S=3100-1

2S=3100-1

2S+1=3100

Chứng tỏ 2S +1  là luỹ thừa của 3

25 tháng 12 2015

 4= 30+31(làm ra nháp)

S= 3+32+33+...+3100

S= (3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^99+3^100)

S=(3x1+3x3)+(3^3x1+3^3x3)+(3^5x1+3^5x3)+...+(3^99x1+3^99x3)

S=3x(1+3)+3^3x(1+3)+3^5x(1+4)+...+3^99x(1+3)

S=3x4+3^3x4+3^5x4+...+3^99x4

S=4x(3+3^3+3^5+...+3^99)

=> S chia hết cho 4.

 

 

22 tháng 3 2021

Đặt Tên Chi

Tìm kiếm

Báo cáo

Đánh dấu

24 tháng 12 2015 lúc 20:28

Cho S=3+32+33+........+3100

a, Chứng minh rằng S chia hết cho 4.

b, Chứng minh rằng 2S+3 là 1 lũy thừa của 3

Toán lớp 6

24 tháng 7 2021

o biết
 

1 tháng 12 2016

a,2n+3chia het cho n+1

n+1 chia het cho n+1 

=>[2n+3]-2[n+1]=2n-3-2n-1=2chia het cho n+1

=>n+1  bé hơn hoặc bằng 1

=>n+1 thuộc ước cuả 2

=>n+1 thuoc 1;2

nên n=0;1

Vậy n=0;1

13 tháng 3 2017

Ta có : S = 1 + 3 + 32 + 33 + ...... + 32015

=> 3S = 3 + 32 + 33 + ...... + 32016

=> 3S - S = 32016 - 1

=> 2S = 32016 - 1

=> 2S + 1 = 32016

Vậy 2S + 1 là luỹ thừa của 1 số tự nhiên (đpcm)

13 tháng 11 2016

 S = 3 + 3+ 3+ ... + 3100

=> 3S =  3+ 3+ ... + 3100+3101

=> 2S = 3101 - 3

=> 2S + 3 = 3101 + 3 - 3  = 3101

=> 2S + 3 là 1 lũy thừa của 3 ( ĐPCM)

Cho Mình Tích Nha

13 tháng 11 2016

 S = 3 + 3+ 3+ ... + 3100

=> 3S =  3+ 3+ ... + 3100+3101

=> 2S = 3101 - 3

=> 2S + 3 = 3101 + 3 - 3  = 3101

=> 2S + 3 là 1 lũy thừa của 3 ( ĐPCM)

3 tháng 11 2015

Ta có S = 3+32+33+....+3100

                = 3.(1+3)+32.(1+3)+.....+399.(1+3)

            =3.4+32.4+......+399.4

Vì 3.4=12 => 32.4 chia hết cho 4

                   .............

                   399.4 chia hết cho 4

=> S chia het cho 4

5 tháng 7 2018

a) Ta có:

A = 1 + 2 + 22 + 23 + ... + 2200

=> 2A = 2(1 + 2 + 22 + 23 + ... + 2200)

=> 2A = 2 + 22 + 23 + 24 + ... + 2201

=> 2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)

=> A = 2201 - 1

=> A + 1 = 2201 - 1 + 1

=> A + 1 = 2201

Vậy A + 1 = 2201

b) Ta có:

B = 3 + 32 + 33 + ... + 32005

=> 3B = 3(3 + 32 + 33 + ... + 32005)

=> 3B = 32 + 33 + 34 + ... + 32006

=> 3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + .. + 32005)

=> 2B = 32006 - 3

c) Ta có:

C = 4 + 22 + 23 + ... + 22005 

Đặt M = 22 + 23 + ... + 22005, ta có:

2M = 2(2+ 23 + ... + 22005)

=> 2M = 23 + 24 + ... + 22006

=> 2M - M = (23 + 24 + ... + 22006) - (22 + 23 + ... + 22005)

=> M = 22006 - 22

=> M = 22006 - 4

Thay M = 22006 - 4 vào C, ta có:

C = 4 + (22006 - 4) = 22006

=> 2C = 2 . 22006 = 22007

Vậy 2C là lũy thừa của 2.