Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1+3+32+33+.................+330
S=1+3+32.1+32.3+...............+32.328
S=1+3+32(1+3+........+328)
S=4+32(1+3+........+328)
vì 32(1+3+........+328) chia hết cho 9 =32 mà 4 không chia hết cho 9 nên S không là số chính phương
a, \(S=2.1+2.3+2.3^2+...+2.3^{2004}\)
\(=2.\left(1+3+3^2+...+3^{2004}\right)\)
Đặt \(A=1+3+3^2+...+3^{2004}\)
\(\Rightarrow\) \(3A=3+3^2+3^3+...+3^{2005}\)
\(\Rightarrow\) \(2A=3^{2005}-1\)
\(\Rightarrow\) \(A=\frac{3^{2005}-1}{2}\)
\(\Rightarrow\) \(S=2.\frac{3^{2005}-1}{2}=3^{2005}-1\)
b, Ta có : \(3^{2005}=3^{4.501+1}=\left(3^4\right)^{501}.3\)
Mà \(\left(3^4\right)^{501}\) có chữ số tận cùng là 1
\(\Rightarrow\) \(\left(3^4\right)^{501}.3\) có chữ số tận cùng là 3
\(\Rightarrow\) \(3^{2005}\) có chữ số tận cùng là 3
\(\Rightarrow\) S có chữ số tận cùng là 2
\(\Rightarrow\) S không phải là số chính phương
Study well ! >_<
S = 1 + 3 + 5 + 7 + .... + ( 2n + 1 )
Ta có:
SSH: (Số đầu - số cuối) : khoảng cách +1
S = [(2n+1) - 1] : 2 + 1= n+1
Tổng: (số đầu + số cuối) x số số hạng : 2
S= [1+ (2n+1)](n+1) : 2
S= (2n+2):2 (n+1)
S= (n+1)(n+1)
S= \(\left(n+1\right)^2\)
\(\Rightarrow\) S là số chính phương.
Vậy S là số chính phương.
Mình lỡ tay,Mình giải lại:
S=\(5+5^2+5^3+...+5^{100}=5+\left(5^2+5^3+...+5^{100}\right)\)
S=\(5+5^2\left(1+5+...+5^{98}\right)=5+25\left(1+5+...+5^{98}\right)\)
Vì 25 chia hết cho 25 nên \(25\left(1+5+...+5^{98}\right)\)chia hết cho 25
Mà 5 ko chia hết cho 25 nên \(5+25\left(1+5+...+5^{98}\right)\)ko chia hết cho 25
Hay S ko chia hết cho 25 (1)
Mà tất cả các số hạng của S là lũy thừa của 5 và có số mũ >0 nên S chia hết cho 5 (2)
Mà số chính phương chia hết cho 5 thì chia hết cho 25 (3)
Từ (1);(2) và (3) => S ko là số chính phương
Vậy S ko là số chính phương
tick nha!!!
S là SCP ( vì SCP có thể tận cùng bằng:1,4,5,6,9 mà S tận cùng là 5 suy ra S là SCP)
a)Ta có: S=1.2.22.23…2100
=>S=20+1+2+3+…+100
=>S=25050
b)Ta có: S=25050=22525.2=(22525)2 là só chính phương
Vậy S là số chính phương