Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Easy!!
\(S=\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{35}>\dfrac{1}{29}+\dfrac{1}{29}+...+\dfrac{1}{29}\) (15 phân số \(\dfrac{1}{29}\))
\(=\dfrac{1.15}{29}=\dfrac{15}{29}>\dfrac{1}{2}\) (*)
\(\Rightarrow\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{35}>\dfrac{1}{2}^{\left(đpcm\right)}\)
P/s: đpcm là điều phải chứng minh
Có \(S=\dfrac{1}{21}+\dfrac{1}{22}+......+\dfrac{1}{35}\)
\(S=\dfrac{1}{21}+\dfrac{1}{22}+.........+\dfrac{1}{35}>\dfrac{1}{29}+\dfrac{1}{29}+\dfrac{1}{29}+........+\dfrac{1}{29}\)( 15 phân số \(\dfrac{1}{29}\))
\(S=\dfrac{15}{29}>\dfrac{1}{2}\)
\(S>\dfrac{1}{2}\)
Vậy S > \(\dfrac{1}{2}\)(đpcm)
a,1/51 > 1/100
1/52 > 1/100
1/53 > 1/100
...
1/100=1/100
=>H>1/100 + 1/100 + 1/100 +...+1/100
H>50/100=1/2
1/51<1/50
1/52<1/50
....
1/100<1/50
=>H<1/50+1/50+...+1/50
H<50/50=1
Vay1/2<H<1
a: Ta có
A = \(\dfrac{1}{10}\) + \((\dfrac{1}{11}\) + \(\dfrac{1}{12}\) + ...+ \(\dfrac{1}{100}\)\()\)
⇒ A > \(\dfrac{1}{10}\) + \((\dfrac{1}{100}\) + \(\dfrac{1}{100}\) + ...+ \(\dfrac{1}{100}\)\()\)90 số hạng
⇒ A > \(\dfrac{1}{10}\) + \(\dfrac{90}{100}\)
⇒ A > 1
vậy A > 1
b: ta có
S = (\(\dfrac{1}{21}\) + \(\dfrac{1}{22}\)+ \(\dfrac{1}{23}\) + \(\dfrac{1}{24}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{26}\) + \(\dfrac{1}{27}\)+ \(\dfrac{1}{28}\) + \(\dfrac{1}{29}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{31}\) + \(\dfrac{1}{32}\)+ \(\dfrac{1}{33}\) + \(\dfrac{1}{34}\) + \(\dfrac{1}{35}\))
⇒ S > (\(\dfrac{1}{25}\) + \(\dfrac{1}{25}\)+ \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{30}\) + \(\dfrac{1}{30}\)+ \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{35}\) + \(\dfrac{1}{35}\)+ \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\))
⇔ S > \(\dfrac{5}{25}\)+\(\dfrac{5}{30}\)+\(\dfrac{5}{35}\)
⇔ S > \(\dfrac{1}{5}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{7}\)
⇔ S > \(\dfrac{107}{210}\)> \(\dfrac{105}{210}\)=\(\dfrac{1}{2}\)
vậy S > \(\dfrac{1}{2}\)
S1:
số số hạng=(999-1).1+1=999 (số hạng)
Tổng = (1+999).999 : 2
= 1000 . 999 : 2
= 999000 :2
= 499500
a) khoảng cách là 1 đơn vị
Số các số hạng: ( 999 - 1 ) : 1 +1 = 999 (số hạng)
S1= ( 1 + 999 ) . 999 : 2 = 499500
b) khoảng cách là 2 đơn vị
Số các số hạng: ( 2010 - 10 ) : 2 + 1 = 1001 (số hạng)
S2= ( 10 + 2010 ) . 1001 : 2 = 1011010
c) khoảng cách là 2 đơn vị
Số các số hạng: ( 1001 - 21 ) : 2 + 1 = 491 (số hạng)
S3= ( 21 + 1001 ) . 491 : 2 = 250901
d) khoảng cách là 1 đơn vị
Số các số hạng: ( 126 - 24 ) : 1 + 1 = 103 (số hạng)
S4= ( 24 + 126 ) . 103 : 2 = 7725
e) khoảng cách là 3 đơn vị
Số các số hạng: ( 79 - 1 ) : 3 + 1 = 27 (số hạng)
S5=(1+79).27:2=1080
f) khoảng cách là 2 đơn vị
Số các số hạng:(155-15):2+1=71(số hạng)
S6=(15+155).71:2=6035
g) khoảng cách là 5 đơn vị
Số các số hạng:(115-15):5+1=21(số hạng)
S7=(15+115).21:2=1365
\(a,S_1=1+2+3+...+999\)
Số số hạng: \(\left(999-1\right):1+1=999\)
Tổng: \(\frac{\left(1+999\right).999}{2}=499500\)
\(b,S_2=10+12+14+...+2010\)
Số số hạng: \(\left(2010-10\right):2+1=1001\)
Tổng: \(\frac{\left(2010+10\right).1001}{2}=1011010\)
Còn lại tương tự nhé!
Số số hạng: (Số cuối - số đầu):khoảng cách + 1
Tổng: [ ( Số đầu + số cuối) . số số hạng ] : 2
Đáp án cần chọn là: A
S = 1 21 + 1 22 + 1 23 + ... + 1 35 S = 1 21 + ... + 1 25 + 1 26 + ... + 1 30 + 1 31 + ... + 1 35 S > 1 25 + ... + 1 25 + 1 30 + ... + 1 30 + 1 35 + ... + 1 35 S > 1 5 + 1 6 + 1 7 = 107 210 > 1 2
Vậy S > 1 2