\(x^4+3x^3-x^2+a.x+b\)  và Q ( x) = \(x^2+2x-3\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2020

\(Q\left(x\right)=x^2+2x-3=x^2+3x-x-3=\left(x+3\right)\left(x-1\right)\)

Q(x) có nghiệm\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}\)

Áp dụng định lý Bezout:

\(P\left(x\right)⋮Q\left(x\right)\Leftrightarrow\hept{\begin{cases}P\left(-3\right)=0\\P\left(1\right)=0\end{cases}}\)

+) \(P\left(-3\right)=0\Leftrightarrow\left(-3\right)^4+3.\left(-3\right)^3-\left(-3\right)^2-3a+b=0\)

\(\Leftrightarrow81-81-9-3a+b=0\Leftrightarrow3a-b=-9\)(1)

+) \(P\left(1\right)=0\Leftrightarrow1^4+3.1^3-1^2+a+b=0\)

\(\Leftrightarrow1+3-1+a+b=0\Leftrightarrow a+b=-3\)(2)

Lấy (1) + (2), ta được:\(4a=-12\Leftrightarrow a=-3\)

Lúc đó \(b=-3+3=0\)

Vậy a = -3; b = 0

24 tháng 1 2020

\(P\left(x\right)=x^4+3x^3-x^2+ax+b\)

\(Q\left(x\right)=x^2+2x-3\)

x^2+2x-3 x^4+3x^3-x^2+ax+b x^2+x-1 x^4+2x^3-3x^2 x^3+x^2+ab+b x^3+2x^2-3x -x^2+(a+3)x+b -x^2-2x+3 (a+5)x+b-3

Để phép tính chia hết thì:

\(\Leftrightarrow\hept{\begin{cases}a+5=0\\b-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-5\\b=3\end{cases}}}\)

Vậy ............

18 tháng 1 2020

a) 3x(x - 1) + 7x2(x  - 1) = 0

<=> x(x - 1)(3 + 7x) = 0

<=> x = 0

hoặc : x - 1 = 0

hoặc 3 + 7x = 0

<=> x = 0

hoặc x = 1

hoặc x = -3/7

b) x- 2018x - 2019 = 0

<=> x2 - 2019x + x - 2019 = 0

<=> x(x - 2019) + (x - 2019) = 0

<=> (x + 1)(x - 2019) = 0

<=> \(\orbr{\begin{cases}x+1=0\\x-2019=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-1\\x=2019\end{cases}}\)

c) (x + 3)2 - x(x - 2) = 13

<=> x2 + 6x + 9 - x2 + 2x = 13

<=> 8x = 13 - 9

<=> 8x = 6

<=> x=  6/8 = 3/4

18 tháng 1 2020

a/\(3x\left(x-1\right)+7x^2\left(x-1\right)=0.\)

\(\Leftrightarrow\left(x-1\right)\left(3x+7x^2\right)=0\)

\(\Leftrightarrow\left(x-1\right)x\left(3+7x\right)=0\)

Th1: x - 1 = 0

=> x = 1

Th2: x= 0

Th3: 3 + 7x = 0

=> x= -3/7

\(\Rightarrow x\in\left\{1;0;-\frac{3}{7}\right\}\)

b/ \(x^2-2018x-2019=0\)

\(\Leftrightarrow x^2+x-2019x-2019=0\)

\(\Leftrightarrow\left(x^2+x\right)-\left(2019x+2019\right)=0\)

\(\Leftrightarrow x\left(x+1\right)-2019\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2019\right)\left(x+1\right)=0\)

Th1 : x -2019 = 0

=> x =2019

Th2: x + 1  =0

=> x = -1

\(\Rightarrow x\in\left\{2019;-1\right\}\)

c/ \(\left(x+3\right)^2-x\left(x-2\right)=13\)

\(\Leftrightarrow x^2+6x+9-x^2+2x=13\)

\(\Leftrightarrow8x=4\Rightarrow x=\frac{1}{2}\)

19 tháng 2 2020

\(ĐKXĐ:x\ne\pm1\)

a) \(A=\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)

\(\Leftrightarrow A=\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)

\(\Leftrightarrow A=x-1+x+1-3\)

\(\Leftrightarrow A=2x-3\)

b) Thay x = 3 vào A, ta được :

\(A=2.3-3=3\)

Thay x = 0 vào A, ta được :

\(A=2.0-3=-3\)

c) Để A = 2

\(\Leftrightarrow2x-3=2\)

\(\Leftrightarrow2x=5\)

\(\Leftrightarrow x=\frac{5}{2}\)

Vậy để \(A=2\Leftrightarrow x=\frac{5}{2}\)

27 tháng 1 2020

Khó vl , dẹp mẹ điiii

27 tháng 1 2020

a)     \(A=\left(\frac{1}{4}x-y\right)\left(x^2+4xy+16y^2\right)+4\left(4y^3-\frac{1}{16}x^3+1\right)\)

\(\Leftrightarrow A=\frac{1}{4}\left(x-4y\right)\left(x^2+4xy+16y^2\right)+16y^3-\frac{1}{4}x^3+4\)

\(\Leftrightarrow A=\frac{1}{4}\left(x^3-64y^3\right)+16y^3-\frac{1}{4}x^3+4\)

\(\Leftrightarrow A=\frac{1}{4}x^3-16y^3+16y^3-\frac{1}{4}x^3+4\)

\(\Leftrightarrow A=4\)

b) \(B=2x\left(x-4\right)^2-\left(x+5\right)\left(x-2\right)\left(x+2\right)+2\left(x-5\right)^2-\left(x-1\right)^2\)

\(\Leftrightarrow B=2x\left(x^2-8x+16\right)-\left(x+5\right)\left(x^2-4\right)+2\left(x^2-10x+25\right)-\left(x^2-2x+1\right)\)

\(\Leftrightarrow B=2x^3-16x^2+32x-x^3-5x^2+4x+20+2x^2-20x+50-x^2+2x-1\)

\(\Leftrightarrow B=x^3-20x^2+18x+69\)

c) \(C=\frac{80x^3-125x}{3\left(x-3\right)-\left(x-3\right)\left(8-4x\right)}\)

\(\Leftrightarrow C=\frac{5x\left(16x^2-25\right)}{\left(x-3\right)\left(3-8+4x\right)}\)

\(\Leftrightarrow C=\frac{5x\left(4x-5\right)\left(4x+5\right)}{\left(x-3\right)\left(4x-5\right)}\)

\(\Leftrightarrow C=\frac{5x\left(4x+5\right)}{x-3}\)

\(\Leftrightarrow C=\frac{20x^2+25x}{x-3}\)

d) \(D=\frac{\left(a-b\right)\left(c-d\right)}{\left(b^2-a^2\right)\left(d^2-c^2\right)}\)

\(\Leftrightarrow D=\frac{\left(a-b\right)\left(c-d\right)}{\left(a^2-b^2\right)\left(c^2-d^2\right)}\)

\(\Leftrightarrow D=\frac{\left(a-b\right)\left(c-d\right)}{\left(a-b\right)\left(a+b\right)\left(c-d\right)\left(c+d\right)}\)

\(\Leftrightarrow D=\frac{1}{\left(a+b\right)\left(c+d\right)}\)

Chúc bạn học tốt !

16 tháng 10 2019

1, a^2 - 4b^2

= a^2 - (2b)^2

=(a-2b)(a+2b)

2,  1/4 a^2 - b^2

=(1/2a)^2 -b^2

=(1/2a-b)(1/2a+b)

16 tháng 10 2019

3,   (a-2b)^2 - (3a+b)^2

=  (a-2b-3a-b)(a-2b+3a+b)

=  (-2a-3b)(4a-b)

28 tháng 10 2019

1 M=\(x^2-4xy+4y^2-2x+4y+10\)

=\(\left(x^2-4xy+4y^2\right)+\left(-2x+4y\right)+10\)

\(=\left(x-2y\right)^2-2\left(x-2y\right)+10\)

\(=\left(x-2y\right)\left(x-2y-2\right)+10\)

\(\left(x-2y\right)\left(x-2y-2\right)\ge0\)

nên \(\left(x-2y\right)\left(x-2y-2\right)+10\ge10\)

\(\Rightarrow\)A\(\ge13\)

dấu "=" xảy ra khi (x-2y)(x-2y-2)=0

\(\left[{}\begin{matrix}x-2y=0\\x-2y-2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}2y=x\\x-2y=2\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0;y=0\\x=2;y=1\end{matrix}\right.\)

vậy GTNN của M=10 khi x=0; y=0

x=2;y=1

19 tháng 10 2018

BẠN ĐỢI MK XÍU NHA

19 tháng 10 2018

1

a) x^2+2x-5                                b) x^2+x+7 9 (dư 8)

2

x=2; x = -(3*căn bậc hai(7)*i+1)/2;x = (3*căn bậc hai(7)*i-1)/2;

3

a=2

NV
5 tháng 10 2019

Sử dụng định lý Bezout:

a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)

b/ \(g\left(x\right)=0\Rightarrow x=-1\)

\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)

Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a

c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)

\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)

Thay \(x=1\Rightarrow a+b=-2\)

\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)

d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)

4 tháng 10 2019

a) Ta có: \(g\left(x\right)=x^2-3x+2\)

                          \(=x^2-x-2x+2\)

                            \(=x\left(x-1\right)-2\left(x-1\right)\)

                           \(=\left(x-1\right)\left(x-2\right)\)

Vì \(f\left(x\right)⋮g\left(x\right)\)

\(\Rightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)q\left(x\right)\)

\(\Rightarrow\hept{\begin{cases}f\left(1\right)=\left(1-1\right)\left(1-2\right)q\left(1\right)=0\left(1\right)\\f\left(2\right)=\left(1-2\right)\left(2-2\right)q\left(2\right)=0\left(2\right)\end{cases}}\)

Từ \(\left(1\right)\Leftrightarrow1^4-3.1^3+1^2+a+b=0\)

\(\Leftrightarrow-1+a+b=0\)

\(\Leftrightarrow a+b=1\left(3\right)\)

Từ \(\left(2\right)\Leftrightarrow2^4-3.2^3+2^2+2a+b=0\)

\(\Leftrightarrow-4+2a+b=0\)

\(\Leftrightarrow2a+b=4\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrow\hept{\begin{cases}a+b=1\\2a+b=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=3\\b=-2\end{cases}}}\)

Vậy a=3 và b=-2 để \(f\left(x\right)⋮g\left(x\right)\)

Các phần sau tương tự