Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=2011 nên x+1=2012
\(P\left(x\right)=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+x+1\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1=1\)
Bài 1: a) P(x) = 0
=> 2 - 7x = 0
=> 7x = 2
=> x = 2 : 7
=> x = 2/7
Vậy x = 2/7 là nghệm của P(x)
b) Q(x) = 0
=> x^2 - 2 = 0
=> x^2 = 2
=> \(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
Bài 2 : Ta có:
P(2011) = 20114 - 2012.20113 + 2012.20112 - 2012.2011 + 2012
= 20114 - (2011 + 1).20113 + (2011 + 1).20112 - (2011 + 1).2011 + (2011 + 1)
= 20114 - 20114 - 20113 + 20113 + 20112 - 20112 - 2011 + 2011 + 1
= 1
Bài 1 :
a, P= 2 - 7x Để p có nghiệm \(\Leftrightarrow\)P = 0 \(\Rightarrow\)2- 7 x =0 \(\Rightarrow\)7x =2 \(\Rightarrow\)x = \(\frac{2}{7}\) Vậy đa thức P có nghiệm bằng \(\frac{2}{7}\)
\(x=2011\Rightarrow2012=x+1\)
\(\Rightarrow M\left(2011\right)=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+1\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+1\)
\(=-x+1=-2011+1=-2010\)
1,
\(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}\) và \(x^4.y^4=81\)
Đặt \(x^2=a\left(a\ge0\right);y^2=b\left(b\ge0\right)\)
Ta có \(\frac{a+b}{10}=\frac{a-2b}{7}\)và \(a^2b^2=81\)
:\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\) (1)
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{9}=b\Rightarrow a=9b\)
Do \(a^2b^2=81\)nên \(\left(9b^2\right).b^2=81\Rightarrow81b^4=81\Rightarrow b^4=1\Rightarrow b=1\left(b\ge0\right)\)
Suy ra a = 9 . 1 = 9
Ta có x2 = 9 và y2 = 1. Suy ra x = ±3, y = ±1.
\(x^4y^4=81\Rightarrow x^2y^2=9\Rightarrow x^2=\frac{9}{y^2}\)
\(\Rightarrow\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}\Leftrightarrow\frac{y^4+9}{10y^2}=\frac{9-2y^4}{7y^2}\Leftrightarrow7\left(y^4+9\right)=10\left(9-2y^4\right)\Leftrightarrow y^4=1\Leftrightarrow y=\pm1\)
\(\Rightarrow x^4=81\Leftrightarrow x=\pm3\)
x | y | 2012x+2013y |
1 | 3 | 8051 |
1 | -3 | -4027 |
-1 | 3 | 4027 |
-1 | -3 | -8051 |