Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(x=1-\sqrt{2}\Leftrightarrow x^2=3-2\sqrt{2}=2-2\sqrt{2}+1\\ \Leftrightarrow x^2=2x+1\Leftrightarrow x^2-2x-1=0\\ \Leftrightarrow P\left(x\right)=ax^2+bx+c=x^2-2x-1\\ \Leftrightarrow a=1;b=-2;c=-1\\ \Leftrightarrow11a+3b+2x=11-6-2=3⋮3\)
Do f(x) là đa thức bậc 4 nên f(x) có dạng sau
\(f\left(x\right)=ax^4+bx^3+cx^2+dx+e\)
Ta có :
\(f\left(1\right)=f\left(-1\right)\Leftrightarrow a+b+c+d+e=a-b+c-d+e\)
\(\Leftrightarrow b+d=-b-d\)
\(\Leftrightarrow b=-d\) (1)
\(f\left(2\right)=f\left(-2\right)\Leftrightarrow16a+8b+4c+2d+e=16a-8b+4c-2d+e\)
\(\Leftrightarrow8b+2d=-8b-2d\)
\(\Leftrightarrow4b=-d\) (2)
Từ (1) và (2) => b = d = 0
Do b,d là hệ số của các số mũ lẻ
mà b = d = 0 nên đa thức f(x) trở thành dạng như sau \(f\left(x\right)=ax^4+cx^2+e\)
Nhận thấy x4 và x2 là 2 số có bậc chẵn
nên với mọi x , f(x) = f(-x)
Giả sử : \(f\left(1\right)=1^4=1\)
\(f\left(-1\right)=\left(-1\right)^4=1\)( vì một số âm hoặc dương nếu có số mũ chẵn thì kết quả sẽ là 1 số dương)
Vì đa thức \(f\left(x\right)\)có bậc 4 ( bậc 4 là bậc chẵn nên mọi số âm hay dương mũ 4 đều có kết quả dương)
Vậy \(f\left(x\right)=f\left(-x\right)\forall x\)( vì đa thức trên có bậc 4 - bậc chẵn)
1) \(f\left(x\right)=ax^{2\:}+bx+6\)có bậc 1 => a=0
Khi đó \(f\left(x\right)=bx+6;f\left(1\right)=3\)
\(\Rightarrow b\cdot1+6=3\Rightarrow b=-3\)
2) \(g\left(x\right)=\left(a-1\right)\cdot x^2+2x+b\)
g(x) có bậc 1 => a-1=0 => a=1. Khi đó
\(g\left(x\right)=2x+b\)lại có g(2)=1
\(\Rightarrow2\cdot2+b=1\Rightarrow b=-3\)
3) \(h\left(x\right)=5x^3-7x^2+8x-b-ax^{3\: }=x^3\left(5-a\right)-7x^2+8x-b\)
h(x) có bậc 2 => 5-a=0 => a=5
Khi đó h(x)=-7x2+8x-b
h(-1)=3 => -7(-1)2+8.(-1)+b=3
<=> -7-8+b=3 => b=18
4) r(x)=(a-1)x3+5x3-4x2+bx-1=(a-1+5)x3-4x2+bx-1=(a+4)x3-4x2+bx-1
r(x) bậc 2 => a+4=0 => a=-4
r(2)=5 => (-4).22+b.2-1=5
<=> -16+2b-1=5
<=> 2b=22 => b=11
vì P(x) là đa thức bậc 4 nên P(x) có dạng :
P(x) = a4x4 + a3x3 + a2x2 + a1x + a0
Ta có : P(1) = P(-1) ; P(2) = P(-2)
Suy ra : a1 + a3 = -a1 - a3 \(\Leftrightarrow\)2a1 + 8a3 = -2a1 - 8a3 \(\Leftrightarrow\)a1 = a3 = 0
Vậy P(x) = a4x4 + a2x2 + a0
P(-x) = a4(-x)4 + a2(-x)2 + a0 = a4x4 + a2x2 + a0 = P(x)
P(x) là một đa thức bậc 4 nên P(x) có dạng thu gọn là:
P(x)=a0+a1x+a2x2+a3x3+a4x4P(x)=a0+a1x+a2x2+a3x3+a4x4
Từ các điều kiện P(1) = P(-1) và P(2) = P(-2), ta suy ra:
a1+a3=−a1−a3a1+a3=−a1−a3 (1)
2a1+8a3=−2a1−8a32a1+8a3=−2a1−8a3 (2)
Từ (1) và (2) suy ra: a1=a3=0a1=a3=0
Vậy P(x)=a0+a2x2+a4x4=a0+a2(−x)2+a4(−x)4=P(−x)P(x)=a0+a2x2+a4x4=a0+a2(−x)2+a4(−x)4=P(−x) với mọi x∈Q