Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử phương trình đã cho có nghiệm này gấp đôi nghiệm kia
Và áp dụng hệ thúc viet ta có:
\(\begin{cases}x_1+x_2=-p\\x_{1.}.x_2=q\\x_1=2x_2\end{cases}\)=>\(\begin{cases}2x_2+x_2=-p\\x_{1.}.x_2=q\\x_1=2x_2\end{cases}\)=>\(\begin{cases}3x_2=-p\\x_{1.}.x_2=q\\x_1=2x_2\end{cases}\)=>\(\begin{cases}x_2=\frac{-p}{3}\\x_{1.}.x_2=q\left(1\right)\\x_1=\frac{-2p}{3}\end{cases}\)
Thay \(x_1\)=\(\frac{-2p}{3}\); \(x_2\)=\(\frac{-p}{3}\) vào (1) ta có:
\(\frac{-2p}{3}\).\(\frac{-p}{3}\)=q
2\(p^2\)=9q
2\(p^2\)-9q=0
Vậy khi 2\(p^2\)-9q=0 thì phương trình trên có nghiệm này gấp 2 nghiệm kia
\(\text{Δ}=\left(-2m\right)^2-4\left(m-1\right)\left(m+1\right)\)
\(=4m^2-4m^2+4=4\)
Vì Δ>0 nên phương trình luôn có hai nghiệm phân biệt
Theo đề, ta có:
\(\left\{{}\begin{matrix}x_1-2x_2=0\\x_1+x_2=\dfrac{2m}{m-1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=\dfrac{2m}{m-1}\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m}{3m-3}\\x_1=\dfrac{4m}{3m-3}\end{matrix}\right.\)
Theo đề, ta có: \(x_1\cdot x_2=\dfrac{m+1}{m-1}\)
\(\Leftrightarrow\dfrac{8m^2}{9\left(m-1\right)^2}=\dfrac{m+1}{m-1}\)
\(\Leftrightarrow8m^2=9\left(m+1\right)\left(m-1\right)\)
\(\Leftrightarrow9m^2-9-8m^2=0\)
hay \(m\in\left\{3;-3\right\}\)
a. Thay m=-3 ta có: \(x^2-2x-3-1=0\Leftrightarrow x^2-2x-4=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{matrix}\right.\)
b. Ta có, để phương trình có nghiệm kép thì: \(\Delta=0\Leftrightarrow2^2-4.1.\left(m-1\right)=0\Leftrightarrow m=2\)
c. Để phương trình có 2 nghiệm phân biệt thì:\(\Delta>0\Leftrightarrow2^2-4.1.\left(m-1\right)>0\Leftrightarrow m< 2\)
Áp dụng định lí Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-2\right)}{1}=2\\x_1x_2=m-1\end{matrix}\right.\)
Theo đề ta có: \(x_1=2x_2\)\(\Rightarrow3x_2=2\Rightarrow x_2=\dfrac{2}{3}\Rightarrow x_1=\dfrac{4}{3}\Rightarrow m=\dfrac{17}{9}\)(TM)
a, Thay m = -3 vào pt trên ta được
\(x^2-2x-4=0\)
\(\Delta'=\left(-1\right)^2-\left(-4\right)=5>0\)
pt có 2 nghiệm pb
\(x_1=2-\sqrt{5};x_2=2+\sqrt{5}\)
b, Để pt có nghiệm kép
\(\Delta'=\left(-1\right)^2-\left(m-1\right)=1-m+1=2-m=0\Leftrightarrow m=2\)
b.
Khi \(m=\dfrac{5}{2}\) pt trở thành pt bậc nhất nên chỉ có 1 nghiệm (loại)
Xét với \(m\ne\dfrac{5}{2}\):
\(\Delta'=\left(m-1\right)^2-3\left(2m-5\right)=m^2-8m+16=\left(m-4\right)^2\)
Pt đã cho luôn có 2 nghiệm \(\forall m\ne\dfrac{5}{2}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1x_2=\dfrac{3}{2m-5}\end{matrix}\right.\)
Két hợp Viet với điều kiện đề bài:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1-x_2=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{8m-17}{2\left(2m-5\right)}\\x_2=\dfrac{-4m+13}{2\left(2m-5\right)}\end{matrix}\right.\)
Thế vào \(x_1x_2=\dfrac{3}{2m-5}\)
\(\Rightarrow\dfrac{\left(8m-17\right)\left(-4m+13\right)}{4\left(2m-5\right)^2}=\dfrac{3}{2m-5}\)
\(\Rightarrow32m^2-148m+161=0\)
\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{7}{4}\\m=\dfrac{23}{8}\end{matrix}\right.\)
PT có 2 nghiệm
\(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\left[-\left(m+2\right)\right]^2-1.\left(m^2+m+6\right)\ge0\)
\(\Leftrightarrow m^2+4m+4-\left(m^2+m+6\right)\ge0\)
\(\Leftrightarrow3m-2\ge0\Leftrightarrow m\ge\frac{2}{3}\)
Khi đó áp dụng hệ thức vi-ét, ta có:
\(\hept{\begin{cases}x_1+x_2=2\left(m+2\right)\\x_1.x_2=m^2+m+6\end{cases}}\)
Không mất tính tổng quát, giả sử \(x_1=3x_2\)
Mà x1 + x2 = 2(m+2)
\(\Rightarrow\hept{\begin{cases}x_1=\frac{3}{2}\left(m+2\right)\\x_2=\frac{1}{2}\left(m+2\right)\end{cases}}\)
Lại có: \(x_1.x_2=m^2+m+6\)
\(\Rightarrow\frac{3}{4}\left(m+2\right)^2=m^2+m+6\)
\(\Leftrightarrow3\left(m+2\right)^2=4\left(m^2+m+6\right)\)
\(\Leftrightarrow3m^2+12m+12=4m^2+4m+24\)
\(\Leftrightarrow m^2-8m+12=0\)
\(\Delta'=\left(-4\right)^2-1.12=4>0\)
Suy ra pt có 2 nghiệm phân biệt:
\(m_1=\frac{4+\sqrt{4}}{1}=6\) (thoả mãn)
\(m_2=\frac{4-\sqrt{4}}{1}=2\) (thoả mãn)
Vậy \(m\in\left\{6;2\right\}\)
Chúc bạn học tốt.
phương trình : \(x^2\)+px+q=0
giả sử phương trình này có nghiệm này gấp đôi nghiệm kia :\(x_1\)=2.\(x_2\)
áp dụng hệ thức vi ét và kết hợp điều kiện trên ta có:
\(\begin{cases}x_1=2x_2\\x_1+x_2=-p\\x_1.x_2=q\end{cases}\)<=>\(\begin{cases}x_1=2x_2\\2x_2+x_2=-p\\x_1.x_2=q\end{cases}\)<=>\(\begin{cases}x_1=2x_2\\3.x_2=-p\\x_1.x_2=q\end{cases}\)<=>\(\begin{cases}x_1=2x_2\\x_2=\frac{-p}{3}\\x_1.x_2=q\end{cases}\)
<=>\(\begin{cases}x_1=\frac{-2p}{3}_{ }\\x_2=\frac{-p}{3}\\x_1.x_2=q\end{cases}\) thay \(x_1\)=\(\frac{-2p}{3}\);\(x_2\)=\(\frac{-p}{3}\) vào phương trình \(x_1\).\(x_2\)=q ta có:
\(\frac{-2p}{3}\).\(\frac{-p}{3}\)=q <=> 2\(p^2\)-9q=0
vậy khi 2\(p^2\)-9p=0 thì phương trình trên có nghiệm này gấp đôi nghiệm kia