K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2017

\(x^2-6x+m=0\)

( a = 1; b = -6; c = m )

\(\Delta=b^2-4ac\)

    \(=\left(-6\right)^2-4.1.m\)

    \(=36-4m\)

Để pt có nghiệm \(\Leftrightarrow\Delta\ge0\)

                           \(\Leftrightarrow36-4m\ge0\)

                           \(\Leftrightarrow m\ge9\)

Vậy pt có nghiệm khi m lớn hơn hoặc bằng 9

                          

30 tháng 4 2019

a) coi m là tham số ta được:

 Δ,=(-2)^2-1.m = 4-m 

Pt có no <=> Δ,>=0 <=> m<=4

b) pt có2nghiệm là 

x1= 2 - căn (4-m)  , x2=  2+ căn (4-m)

thay vào 1/x1 +1/x2 =4 ta được:

1/(2-căn (4-m) +1/(2+căn (4-m) =4

<=>[2+ căn (4-m) +2 -căn (4-m)]  /  [ 4-4-m] =4

<=> 4/ -m=4

<=> m=-1

30 tháng 4 2019

a) Để phương trình:x2-4x+m có nghiệm thì:\(\Delta\)'=(-2)2-1.m\(\ge\)0<=>4-m\(\ge\)0<=>m\(\le\)4

b)Ta có:\(\frac{1}{x_1}\)+\(\frac{1}{x_2}\)=\(\frac{x_1+x_2}{x_1.x_2}\)=4 (*)

Do x1,xlà 2 nghiệm của phương trình x2-4x+m

Nên theo Định lý Viète, ta được: \(\hept{\begin{cases}x_1+x_2=4\\x_1.x_x=m\end{cases}}\)

Thay vào đẳng thức (*), ta được::\(\frac{1}{x_1}\)+\(\frac{1}{x_2}\)=\(\frac{4}{m}\)=4<=>m=1

c, 

\(\Delta'=\left(m+3\right)^2-\left(m^2+3\right)\\ =m^2+6m+9-m^2-3\\ =6m+6\) 

Phương trình có nghiệm kép

\(\Delta'=0\\ 6m+6=0\\ \Leftrightarrow m=-1\) 

Với m = -1

\(\Rightarrow x^2-4x+4=0\\ \Leftrightarrow x=2\)

16 tháng 3 2022

a, \(\Delta'=m^2-2m+1=\left(m-1\right)^2\)

Vậy pt luôn có 2 nghiệm 

b, để pt có 2 nghiệm pb khi m khác 1 

c, để pt có nghiệm kép khi m = 1 

d. Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2m\left(1\right)\\x_1x_2=2m-1\left(2\right)\end{matrix}\right.\)

Ta có \(x_1-2x_2=0\left(3\right)\)

Từ (1) ; (3) ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m\\x_1=2m-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2m-3\\x_1=2m-2m+3=3\end{matrix}\right.\)

Thay vào (2) ta được \(6m-9=2m-1\Leftrightarrow m=2\)

21 tháng 4 2016

Lập đen ta là zong thôi

a) đenta =b2-4ac= (m-1)2-4.1.(-m)=m2-2m+1+4m=(m+1)2

Ta có (m+1)2 >= 0 với mọi m thuộc R

=> đenta >=0

Vậy :

b)Phương trình có hai nghiệm phân biệt <=> đebta>0 <=> (m+1)2>0 <=> m+1>0<=>m>-1

VẬY VỚI m>-1 thì pt (1) có hai nghiệm phân biệt

21 tháng 4 2016

Lập đen ta phây = b'2-ac = (-1)^2-1.(m-1)=1-m+1=2-m

Pt (1) có nghiệm kép <=> đenta phẩy = 0 <=> 2-m=0 <=>m=2

Thay m = 2 vào pt ta được 

x2-2x+1=0

Ta có: a+b+c = 1-2+1 = 0 

=> x1=1      x2 =c/a=1

Vậy pt (1) có ngiệm kép x1 =x2 =1

DD
22 tháng 11 2021

a) Với \(m=0\): hệ phương trình đã cho tương đương với: 

\(\hept{\begin{cases}4y=10\\x=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=\frac{5}{2}\end{cases}}\)

Với \(m\ne0\): hệ có nghiệm duy nhất khi: 

\(\frac{m}{1}\ne\frac{4}{m}\Leftrightarrow m\ne\pm2\)

Hệ có vô số nghiệm khi: 

\(\frac{m}{1}=\frac{4}{m}=\frac{10-m}{4}\Leftrightarrow m=2\)

Hệ vô nghiệm khi: 

\(\frac{m}{1}=\frac{4}{m}\ne\frac{10-m}{4}\Leftrightarrow m=-2\).

b) với \(m\ne\pm2\)hệ có nghiệm duy nhất. 

\(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(4-my\right)+4y=10-m\\x=4-my\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(4-m^2\right)y=10-5m\\x=4-my\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{8-m}{m+2}\\y=\frac{5}{m+2}\end{cases}}\)

\(\hept{\begin{cases}\frac{8-m}{m+2}>0\\\frac{5}{m+2}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}8-m>0\\m+2>0\end{cases}}\Leftrightarrow-2< m< 8\)

c) \(\hept{\begin{cases}\frac{8-m}{m+2}=\frac{10-m-2}{m+2}=\frac{10}{m+2}-1\inℤ\\\frac{5}{m+2}\inℤ\end{cases}}\Leftrightarrow\frac{5}{m+2}\inℤ\)

\(\frac{5}{m+2}=t\inℤ\Rightarrow m=\frac{5}{t}-2\)

Để \(x,y\)dương thì \(-2< \frac{5}{t}-2< 8\Leftrightarrow0< \frac{5}{t}< 10\Rightarrow t\ge1\)

Vậy \(m=\frac{5}{t}-2\)với \(t\)nguyên dương thì thỏa mãn ycbt. 

7 tháng 2 2022

a. Thay m=-3 ta có: \(x^2-2x-3-1=0\Leftrightarrow x^2-2x-4=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{matrix}\right.\)

b. Ta có, để phương trình có nghiệm kép thì: \(\Delta=0\Leftrightarrow2^2-4.1.\left(m-1\right)=0\Leftrightarrow m=2\)

c. Để phương trình có 2 nghiệm phân biệt thì:\(\Delta>0\Leftrightarrow2^2-4.1.\left(m-1\right)>0\Leftrightarrow m< 2\)

Áp dụng định lí Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-2\right)}{1}=2\\x_1x_2=m-1\end{matrix}\right.\)

Theo đề ta có: \(x_1=2x_2\)\(\Rightarrow3x_2=2\Rightarrow x_2=\dfrac{2}{3}\Rightarrow x_1=\dfrac{4}{3}\Rightarrow m=\dfrac{17}{9}\)(TM)

7 tháng 2 2022

a, Thay m = -3 vào pt trên ta được 

\(x^2-2x-4=0\)

\(\Delta'=\left(-1\right)^2-\left(-4\right)=5>0\)

pt có 2 nghiệm pb 

\(x_1=2-\sqrt{5};x_2=2+\sqrt{5}\)

b, Để pt có nghiệm kép 

\(\Delta'=\left(-1\right)^2-\left(m-1\right)=1-m+1=2-m=0\Leftrightarrow m=2\)

 

a: Để phương trình có nghiệm thì 4-4(m-1)>=0

=>4(m-1)<=4

=>m-1<=1

hay m<=2

b: Thay x=3 vào pt, ta được:

9-6+m-1=0

=>m+2=0

hay m=-2