Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Đặt t= x-1 hay x= t+1, thay vào pt đã cho ta được pt:
t2+ 2(1-m) t+ m2- 3 m+2= 0 (2)
pt (1) có 2 nghiệm thỏa mãn x1< 1< x2 khi và chỉ khi pt (2) có 2 nghiệm: t1< 0 < t2 suy ra P < 0
Hay m2- 3m+ 2 < 0
Do đó: 1 < m < 2
Kết luận: với 1< m< 2 thì pt (1) có hai nghiệm x1< 1< x2
Đề đúng là \(m^3-3m\) chứ bạn?
\(\Delta'=m^2-m^3-3m\ge0\)
\(\Leftrightarrow m\left(-m^2+m-3\right)\ge0\)
\(\Rightarrow m\le0\) (do \(-m^2+m-3=-\left(m-\frac{1}{2}\right)^2-\frac{11}{4}< 0;\forall m\))
b/ \(x_1^2+x_2^2\ge8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge8\)
\(\Leftrightarrow4m^2-2m^3+6m\ge8\)
\(\Leftrightarrow m^3-2m^2-3m+4\le0\)
\(\Leftrightarrow\left(m-1\right)\left(m^2-m-4\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}m\le\frac{1-\sqrt{17}}{2}\\1\le m\le\frac{1+\sqrt{17}}{2}\end{matrix}\right.\) \(\Rightarrow m\le\frac{1-\sqrt{17}}{2}\)
Chọn D
Đặt t= x-1 hay x= t+1, thay vào pt đã cho ta được pt:
t2+ 2(1-m) t+ m2- 3 m+2= 0 (2)
Để pt (1) có nghiệm x≤ 1 khi và chỉ khi pt (2) có nghiệm t≤ 0
TH1: Pt(2) có nghiệm : t1≤ 0 ≤ t2
Khi đó; P= t1.t2 ≤0 hay m2- 3m+ 2≤ 0 hay 1≤ m ≤ 2
TH2: pt (2) có nghiệm
Kết luận: với 1≤ m≤ 2 thì pt (1) có nghiệm x≤1
Phương trình bậc hai a x 2 + b x + c = 0 có hai nghiệm x 1 và x 2 mà x 1 + x 2 = 4 khi
Δ ≥ 0 và (-b)/a = 4.
Với m = 1 thì (-b)/a = -2(m + 1) = -4 không đúng.
Với m = -3 thì (-b)/a = 4 đúng, nhưng
Δ’ = ( m + 1 ) 2 – 2 ( m + 6 ) = m 2 – 11 < 0, sai
Với m = -2 thì (-b)/a = 2, sai.
Vậy cả 3 phương án A, B, C đều sai và đáp án là D.
Đáp án: D
Để pt có 2 nghiệm khác 0:
\(\left\{{}\begin{matrix}m-1\ne0\\\Delta'=m^2-\left(m-1\right)\left(m+1\right)\ge0\\x_1x_2=\frac{m+1}{m-1}\ne0\end{matrix}\right.\) \(\Rightarrow m\ne\pm1\)
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}>-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}+\frac{5}{2}>0\)
\(\Leftrightarrow\frac{2\left(x_1+x_2\right)^2+x_1x_2}{2x_1x_2}>0\)
\(\Leftrightarrow\frac{8\left(\frac{m}{m-1}\right)^2+\frac{m+1}{m-1}}{\frac{2\left(m+1\right)}{m-1}}>0\Leftrightarrow\frac{\frac{8m^2}{m-1}+m+1}{2\left(m+1\right)}>0\)
\(\Leftrightarrow\frac{9m^2-1}{2\left(m-1\right)\left(m+1\right)}>0\Leftrightarrow\frac{\left(3m-1\right)\left(3m+1\right)}{2\left(m-1\right)\left(m+1\right)}>0\)
\(\Rightarrow\left[{}\begin{matrix}m< -1\\-\frac{1}{3}< m< \frac{1}{3}\\m>1\end{matrix}\right.\)
\(x^3-x^2+2mx-2m=0\)
\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)
Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)
a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\)
Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)
Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu
b.
Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)
\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn
Em coi lại đề bài
Để pt có 2 nghiệm khác 0 \(\Leftrightarrow-2m-1\ne0\Rightarrow m\ne-\frac{1}{2}\)
\(a-b+c=1+2m-2m-1=0\)
\(\Rightarrow\) Pt đã cho luôn có 2 nghiệm: \(\left[{}\begin{matrix}x=-1\\x=2m+1\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x_1=-1\\x_2=2m+1\end{matrix}\right.\)
\(\frac{1}{x_1}-\frac{1}{x_2}=3\Leftrightarrow\frac{1}{-1}-\frac{1}{2m+1}=3\)
\(\Leftrightarrow-\frac{1}{2m+1}=4\Rightarrow2m+1=-\frac{1}{4}\Rightarrow m=-\frac{5}{8}\)
TH2: \(\left\{{}\begin{matrix}x_1=2m+1\\x_2=-1\end{matrix}\right.\)
\(\frac{1}{x_1}-\frac{1}{x_2}=3\Leftrightarrow\frac{1}{2m+1}-\frac{1}{-1}=3\)
\(\Leftrightarrow\frac{1}{2m+1}=2\Rightarrow2m+1=\frac{1}{2}\Rightarrow m=-\frac{1}{4}\)
\(1,\\ a,ĐK:m\ne1\\ \Delta=49+48\left(m-1\right)=48m+1\\ \text{PT vô nghiệm }\Leftrightarrow48m+1< 0\Leftrightarrow m< -\dfrac{1}{48}\\ \text{PT có nghiệm kép }\Leftrightarrow48m+1=0\Leftrightarrow m=-\dfrac{1}{48}\\ \text{PT có 2 nghiệm phân biệt }\Leftrightarrow48m+1>0\Leftrightarrow m>-\dfrac{1}{48};m\ne1\)
\(b,\Delta=4\left(m-1\right)^2+4\left(2m+1\right)=4m^2+8>0,\forall m\\ \text{Vậy PT có 2 nghiệm phân biệt với mọi m}\\ 2,\\ \text{PT có 2 nghiệm phân biệt }\)
\(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2-1\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2+4>0\\ \Leftrightarrow8m+8>0\\ \Leftrightarrow m>-1\)
Chọn D
Đặt t= x-1 hay x= t+1, thay vào pt đã cho ta được pt:
t2+ 2(1-m) t+ m2- 3 m+2= 0 (2)
pt (1) có 2 nghiệm thỏa x1< x2< 1 khi và chỉ khi pt (2) có 2 nghiệm:
(vô nghiệm)
Kết luận: không tồn tại m thỏa mãn bài toán.