K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2019

Chọn D

Đặt  t= x-1 hay x= t+1, thay vào pt đã cho ta được pt:

t2+ 2(1-m) t+ m2- 3 m+2= 0  (2)

pt (1) có 2 nghiệm thỏa  x1< x2< 1 khi  và chỉ khi  pt (2) có 2 nghiệm:

(vô nghiệm)

Kết luận: không tồn tại m thỏa mãn bài toán.

26 tháng 9 2017

Chọn C

Đặt  t= x-1 hay x= t+1, thay vào pt đã cho ta được pt:

t2+ 2(1-m) t+ m2- 3 m+2= 0  (2)

pt (1) có 2 nghiệm thỏa  mãn x1< 1< x2 khi và chỉ khi  pt (2) có 2 nghiệm:  t1< 0 < t2  suy ra P < 0

Hay m2- 3m+ 2 < 0

Do đó:  1 <  m < 2

Kết luận: với 1< m< 2 thì pt (1) có hai nghiệm  x1< 1< x2

NV
22 tháng 6 2020

Đề đúng là \(m^3-3m\) chứ bạn?

\(\Delta'=m^2-m^3-3m\ge0\)

\(\Leftrightarrow m\left(-m^2+m-3\right)\ge0\)

\(\Rightarrow m\le0\) (do \(-m^2+m-3=-\left(m-\frac{1}{2}\right)^2-\frac{11}{4}< 0;\forall m\))

b/ \(x_1^2+x_2^2\ge8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge8\)

\(\Leftrightarrow4m^2-2m^3+6m\ge8\)

\(\Leftrightarrow m^3-2m^2-3m+4\le0\)

\(\Leftrightarrow\left(m-1\right)\left(m^2-m-4\right)\le0\)

\(\Rightarrow\left[{}\begin{matrix}m\le\frac{1-\sqrt{17}}{2}\\1\le m\le\frac{1+\sqrt{17}}{2}\end{matrix}\right.\) \(\Rightarrow m\le\frac{1-\sqrt{17}}{2}\)

14 tháng 11 2017

Chọn D

Đặt  t= x-1 hay x= t+1, thay vào pt đã cho ta được pt:

t2+ 2(1-m) t+ m2- 3 m+2= 0  (2)

Để pt (1) có nghiệm x 1 khi và chỉ khi pt (2) có nghiệm t 0 

TH1: Pt(2) có nghiệm : t1≤ ≤ t2

Khi đó; P= t1.t2 0 hay m2- 3m+ 2 0 hay 1≤  2

TH2: pt (2) có nghiệm

Kết luận: với 1 m 2 thì pt (1) có nghiệm x1

13 tháng 12 2019

Câu c) mình sai rồi nên hãy giúp mình câu a và b thôi 

13 tháng 8 2018

Phương trình bậc hai a x 2   +   b x   +   c   =   0 có hai nghiệm x 1  và x 2  mà  x 1   +   x 2   =   4  khi

Δ ≥ 0 và (-b)/a = 4.

Với m = 1 thì (-b)/a = -2(m + 1) = -4 không đúng.

Với m = -3 thì (-b)/a = 4 đúng, nhưng

Δ’ = ( m   +   1 ) 2   –   2 ( m   +   6 )   =   m 2   –   11 < 0, sai

Với m = -2 thì (-b)/a = 2, sai.

Vậy cả 3 phương án A, B, C đều sai và đáp án là D.

Đáp án: D

NV
10 tháng 6 2020

Để pt có 2 nghiệm khác 0:

\(\left\{{}\begin{matrix}m-1\ne0\\\Delta'=m^2-\left(m-1\right)\left(m+1\right)\ge0\\x_1x_2=\frac{m+1}{m-1}\ne0\end{matrix}\right.\) \(\Rightarrow m\ne\pm1\)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}>-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}+\frac{5}{2}>0\)

\(\Leftrightarrow\frac{2\left(x_1+x_2\right)^2+x_1x_2}{2x_1x_2}>0\)

\(\Leftrightarrow\frac{8\left(\frac{m}{m-1}\right)^2+\frac{m+1}{m-1}}{\frac{2\left(m+1\right)}{m-1}}>0\Leftrightarrow\frac{\frac{8m^2}{m-1}+m+1}{2\left(m+1\right)}>0\)

\(\Leftrightarrow\frac{9m^2-1}{2\left(m-1\right)\left(m+1\right)}>0\Leftrightarrow\frac{\left(3m-1\right)\left(3m+1\right)}{2\left(m-1\right)\left(m+1\right)}>0\)

\(\Rightarrow\left[{}\begin{matrix}m< -1\\-\frac{1}{3}< m< \frac{1}{3}\\m>1\end{matrix}\right.\)

NV
11 tháng 9 2021

\(x^3-x^2+2mx-2m=0\)

\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)

Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)

a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\) 

Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)

Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m

\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu

b.

Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)

\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn

Em coi lại đề bài

NV
1 tháng 6 2020

Để pt có 2 nghiệm khác 0 \(\Leftrightarrow-2m-1\ne0\Rightarrow m\ne-\frac{1}{2}\)

\(a-b+c=1+2m-2m-1=0\)

\(\Rightarrow\) Pt đã cho luôn có 2 nghiệm: \(\left[{}\begin{matrix}x=-1\\x=2m+1\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x_1=-1\\x_2=2m+1\end{matrix}\right.\)

\(\frac{1}{x_1}-\frac{1}{x_2}=3\Leftrightarrow\frac{1}{-1}-\frac{1}{2m+1}=3\)

\(\Leftrightarrow-\frac{1}{2m+1}=4\Rightarrow2m+1=-\frac{1}{4}\Rightarrow m=-\frac{5}{8}\)

TH2: \(\left\{{}\begin{matrix}x_1=2m+1\\x_2=-1\end{matrix}\right.\)

\(\frac{1}{x_1}-\frac{1}{x_2}=3\Leftrightarrow\frac{1}{2m+1}-\frac{1}{-1}=3\)

\(\Leftrightarrow\frac{1}{2m+1}=2\Rightarrow2m+1=\frac{1}{2}\Rightarrow m=-\frac{1}{4}\)

23 tháng 11 2021

\(1,\\ a,ĐK:m\ne1\\ \Delta=49+48\left(m-1\right)=48m+1\\ \text{PT vô nghiệm }\Leftrightarrow48m+1< 0\Leftrightarrow m< -\dfrac{1}{48}\\ \text{PT có nghiệm kép }\Leftrightarrow48m+1=0\Leftrightarrow m=-\dfrac{1}{48}\\ \text{PT có 2 nghiệm phân biệt }\Leftrightarrow48m+1>0\Leftrightarrow m>-\dfrac{1}{48};m\ne1\)

\(b,\Delta=4\left(m-1\right)^2+4\left(2m+1\right)=4m^2+8>0,\forall m\\ \text{Vậy PT có 2 nghiệm phân biệt với mọi m}\\ 2,\\ \text{PT có 2 nghiệm phân biệt }\)

\(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2-1\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2+4>0\\ \Leftrightarrow8m+8>0\\ \Leftrightarrow m>-1\)