K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2018

a) \(\Delta'=m^2-\left(4m-4\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)

=> pt luôn có nghiệm với mọi m thuộc R

b) theo đl Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4m-4\end{matrix}\right.\)(*)

ta có: \(3x_1x_2+5=-x_1^2-x_2^2\Leftrightarrow3x_1x_2+5=-\left(x_1+x_2\right)^2+2x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2+5=0\)(**)

\(\Leftrightarrow\) (((bạn thay (*) vào (**) sẽ được một phương trình bậc hai một ẩn m, giải phương trình đó là được )))

Bài 1:

a: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-1\right)=4m^2-8m+4=\left(2m-2\right)^2>=0\)

Do đó: Phương trình luôn có nghiệm

b: Theo đề, ta có: \(\left(2m\right)^2=2m-1+7=2m+6\)

\(\Leftrightarrow4m^2-2m-6=0\)

\(\Leftrightarrow4m^2-6m+4m-6=0\)

=>(4m-6)(m+1)=0

=>m=-1 hoặc m=3/2

13 tháng 4 2018

a) Ta có \(\Delta'=m^2+1>0\forall m\) nên phương trình luôn có hai nghiệm phân biệt với mọi m

b) Theo Viet ta có:

\(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=-1\end{cases}}\)

Vậy nên \(x_1^2+x_2^2-x_1x_2=\left(x_1+x_2\right)^2-3x_1x_2=4m^2+3\)

Để \(x_1^2+x_2^2-x_1x_2=7\Rightarrow4m^2+3=7\Rightarrow\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)

6 tháng 6 2018

b theo viet co 

x1+x2=2m

x1*x2=-1

x1^2+x2^2-x1*x2=7

(x1+x2)^2 -2x1*x2-x1-x2=7

4m^2+2+1=7

4m^2=4 m=+-1

15 tháng 5 2019

Delta= b^2 -4ac = (6)^2 - 4(-m^2 +8m -8)

=> 36 +4m(m-2+2) 

=> 36+4m^2-4m+8m

=> 4m^2 - 4m +44

=> (2m)^2 - 2×(2m)(1) + 1^2 + 43

=> (2m - 1)^2 +43 

Mà (2m -1)^2 > 0 vơiz mọi m

=> (2m-1)^2 +43 > 43 với mọi m

Vậy với mọi giá trị của m thì.....

1 tháng 10 2017

a) \(\Delta=\left(-2m\right)^2-4.1.\left(2m-1\right)=4m^2-8m+4=\left(2m-2\right)^2\ge0\)

Vậy phương trình đã cho luôn có nghiệm với mọi m

b) \(2\left(x_1^2+x_2^2\right)-5x_1x_2=27\)

\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2-27=0\)

\(\Leftrightarrow2\left(x_1+x_2\right)^2-4x_1x_2-5x_1x_2-27=0\)

\(\Leftrightarrow2\left(2m\right)^2-9\left(2m-1\right)-27=0\)

\(\Leftrightarrow8m^2-18m-18=0\)\(\Rightarrow\)\(\left[{}\begin{matrix}m_1=3\\m_2=-\dfrac{3}{4}\end{matrix}\right.\)

Vậy khi \(m=3\) hoặc \(m=-\dfrac{3}{4}\) thì.....

21 tháng 5 2019

a, tính biệt thức delta rồi ép ra hđt thì nó luôn >0

b,theo vi-ét:  ..... (tự tính nha bạn )

ta có : x12+x22= 2x1x2 +65

=> (x1+x2)2 - 2x1x2 = 2x1x2 +65

thay tổng và tích từ vi-ét chứa ẩn m vào rồi tính ra m 

nhạt =.=

9 tháng 11 2019

+) Cho pt: 2x+ mx + m - 3 = 0. Chứng minh rằng pt có 2 nghiệm phân biệt

Ta có: \(a=2;b=m;c=m-3.\)
\(\text{Δ}=b^2-4ac=m^2-4.2.\left(m-3\right)=m^2-8m+24-\left(m-4\right)^2+8\)

=> đpcm

+) Cho pt: x2 - 2(2m-1)x + 3m2 - 4 = 0. Chứng minh rằng pt luôn có nghiệm với mọi m;  Tìm m để x12 + x22 - x1x= 5 (*)

Ta có: \(a=1;b'=-\left(2m-1\right);c=3m^2-4\)

\(\text{Δ′}=-\left(2m-1\right)^2-1.\left(3m^2-4\right)=4m^2-4m+1-3m^2+4=m^2-4m+5=\left(m-2\right)^2+1\)

=> Pt có nghiệm với mọi m

ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-1\left(1\right)\\x_1x_2=\frac{c}{a}=3m^2-4\left(2\right)\end{cases}}\)

(*)\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=5\)

    thay (1) và (2) vào (*) ta có: 

\(\left(2m-1\right)^2-3\left(3m^2-4\right)=5\)

\(\Leftrightarrow4m^2-4m+1-9m^2+12=5\)

\(\Leftrightarrow5m^2+4m-8=0\)

\(\Leftrightarrow\begin{cases}m=\frac{-2+2\sqrt{11}}{2}\\m=\frac{-2-2\sqrt{11}}{2}\end{cases}\)

Vậy \(m=\frac{-2+2\sqrt{11}}{2}\)hoặc \(m=\frac{-2-2\sqrt{11}}{2}\)thoả mãn x12 + x22 - x1x= 5

(Câu này mình nghĩ là tìm m để  x12 + x22 + x1x= 5 thì đúng hơn, nếu đúng thì bạn bình luận để mình làm nhé!)

Học tốt nhé!